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In this supplementary document, we first provide additional implementation
details about the 2D mask guided 3D sampling (Sec. A.1) and 2D slice based 3D
discriminator (Sec. A.2) used in our approach (Sec. A). Next, we provide examples
of hand-object tracks on VISOR (Fig. A, Fig. B), qualitative comparisons of
our HORSE model with AC-SDF on MOW (Fig. C, Fig. D) & HO3D (Fig. E),
failure cases of our model (Fig. F) and visualizations of cross-section maps used
in the discriminator (Fig. G).

A Architecture Details

A.1 2D Mask Guided 3D Sampling

We supervise the occupancy network F via consistency in masks in multiple views
of the object. Let’s assume we have multiple views {I1, . . . , In} and corresponding
segmentation masks for objects of interaction in these n views {M1, . . . ,Mn}.
Given this setup, we compute the occupancy labels for a point x as sgt =
∩n
i=1Mi(xpi

) and train using Lvisual-hull = CE(s, sgt) where CE is cross-entropy
loss, s = f(x; I, θa, θw, θcK) is the predicted occupancy at x and xpi

= πθw
i
(x)

is the projection of x into the image Ii using FrankMocap [6] predictions of the
hand pose and camera parameters.
Camera pose: We assume that the hand is rigidly moving with the object. Thus,
the relative pose of the hand between different views reveals the relative camera
pose across views. Consider all poses w.r.t object. Let ciTo denote the camera
pose in view i. Thus, relative pose between two views, i.e. ciTcj = ciTo ∗ oTcj .
Using the hand pose estimated, w.r.t camera, from FrankMocap, this can be
written as ciTcj = ciThi ∗hiTo∗oThj ∗hjTcj . Since we assume that hand is rigid
w.r.t object, hiTo = hjTo and hiTo ∗ oThj = I. Thus ciTcj = ciThi ∗ hjTcj .
Sampling details: An important consideration is assigning ground truth labels
to the 8192 sampled points since we rely on FrankMocap predicted hand pose
and camera parameters which may be inaccurate. First, we uniformly sample
4096 3D points in [-1,1]3 in the wrist coordinate frame and consider the points
projecting into the object mask in all views as occupied. Since all these 4096
points may not be occupied, we use rejection sampling to repeat the procedure,
for maximum of 50 times, until we get 4096 occupied points. Moreover, due to
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hand occlusions and errors in FrankMocap predictions, it is possible that some
3D points belonging to the object are not projected into the object masks but
we do not want the network to predict these points as unoccupied. So, we adopt
additional strategies for sampling unoccupied points. We disregard points which
project onto the object mask in some views and hand mask in other views as these
points could belong to object due to hand occlusion. Also, all points projecting
into the hand mask in all views and vertices of the MANO [5] mesh are labeled
as unoccupied.

A.2 2D Slice based 3D Discriminator as Shape Prior

We adopt an adversarial training framework [2] to jointly build a 3D shape
prior using synthetic ObMan objects while providing the supervision for training
f . We train a discriminator D to differentiate between real (synthetic shapes
from ObMan dataset) and generated shapes (shapes predicted by F). We derive
supervision for F by encouraging it to predict shapes that are real as per the
discriminator D.

Building this prior in 3D is computationally challenging due to large number
of quieries required to the occupancy network. Instead, we build this prior on
occupancy values in arbitrary 2D slices (that pass through the origin in the wrist
coorindate frame) of real and predicted 3D shapes. This involves sampling the
function F on a 2D grid, of dimension 32x32, placed on a random plane passing
through the origin.

We implement the discriminator as a 3-layer convolutional network which
takes as input a 32x32 slice and outputs a 512 dimensional feature vector, followed
by a 1-layer MLP with 128 hidden nodes. We use 64, 128 & 256 filters in the
1st, 2nd & 3rd convolutional layers respectively and use filter size of 5x5 for all
convolutional layers. We use ReLU activation function for all layers except the
last layer and use BatchNorm after each convolution.

Supervision for F is obtained by computing gradients through D on the
sampled occupancy values so as to maximize the realism of the occupancy slices
output by F . Following [3], we use the least squares formulation [4] for training
the discriminator. The training is done in an alternation fashion where D is
updated twice for every update of F .

B Visualizations

Hand and object tracks on VISOR: Using existing hand pose estimation
techniques [6], we are able to track the objects in relation to hands through
time, in in-the-wild videos. We visualize these tracks along with object masks
from the VISOR dataset [1] in Fig. A. This form of data, where objects move
rigidly relative to hands, is used to train our proposed formulation to learn 3D
geometry of hand-held objects from in-the-wild videos. However, we rely on
FrankMocap predictions, which may not be always accurate throughout the video
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clip, as shown in Fig. B. We automatically filter these sequences using uncertainty
estimates from the procedure described in Sec. 4 of the main paper.
Qualitative comparison of HORSE and AC-SDF: We compare the mesh
generated by our model and AC-SDF trained on ObMan on object generalization
splits of MOW (Fig. C, Fig. D) & HO3D (Fig. E) datasets. For this, we sample
points uniformly in a 64x64x64 volume, predict their occupancies or SDF from
the network and run marching cubes to get the mesh. We project the mesh into
the input image and render it in different views. We observe that our model is
able to capture the visual hull of the object, as evidenced by the projection of
the mesh onto the image, and can generate more coherent shapes than AC-SDF,
which often reconstructs disconnected and scattered shapes.
Failure cases of HORSE: From visualizations in Fig. F. We observe that
our model sometimes generates enlarged or protruded shapes. This could be
due to inaccurate hand pose during training because of which the model gets
confused about which points are inside or outside. Moreover, some objects are
only partially visible in the cropped image, which is input to the model, due to
which the pixel-aligned features may not represent the object semantics well.
Cross-section maps for discriminator: We visualize the 2D cross-sections
from the intersection of the sampled planes with the 3D shape of the object
in Fig. G. Each of these cross-section map is 32x32 dimensional and we show
120 (8x15 grid) maps in each image, with the red region denoting pixels inside
the object and yellow region representing pixels outside. These cross-sections
are fed as input to the discriminator which is trained to distinguish between the
cross-sections from our model and cross-sections from the synthetic shapes in the
ObMan dataset. We show the cross-sections from our predictions on the MOW
dataset without the discriminator and with the discriminator. We observe that
holes in the cross-section maps and size of the blobs get reduced after training
with discriminator.
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Fig.A: Hand-object tracks on VISOR. We visualize the hand predictions from
FrankMocap [6] and the object masks from VISOR [1] on several video clips. We observe
that FrankMocap predictions are reaonsably accurate for most clips involving several
objects.

Fig. B: Inaccurate hand pose. We observe several cases where the predicted hand
pose from FrankMocap in some frames is not accurate.
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Fig. C: Mesh visualizations on MOW object generalization split. We show the
object mesh projected onto the image and rendered in different views for our HORSE
model and compare with the AC-SDF model trained on ObMan dataset with 3D
supervision (best baseline model). We also show the ground truth (GT) object model.
We observe that our model is able to predict the object shape more accurately than
AC-SDF which often reconstructs smaller and disconnected shapes.
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Fig. D: Mesh visualizations on MOW object generalization split. We show the
object mesh projected onto the image and rendered in different views for our HORSE
model and compare with the AC-SDF model trained on ObMan dataset with 3D
supervision (best baseline model). We also show the ground truth (GT) object model.
We observe that our model is able to predict the object shape more accurately than
AC-SDF which often reconstructs smaller and disconnected shapes.
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Fig. E: Mesh visualizations on HO3D object generalization split. We show the
object mesh projected onto the image and rendered in different views for our HORSE
model and compare with the AC-SDF model trained on ObMan dataset with 3D
supervision (best baseline model). We also show the ground truth (GT) object model.
We observe that our model is able to predict the object shape more accurately than
AC-SDF which often reconstructs smaller and disconnected shapes.
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Fig. F: Failure cases of HORSE on MOW object generalization split. We
visualize some failure cases of our HORSE model MOW dataset. We observe that
our methods sometimes generates enlarged or protruded shapes. This could be due to
inaccurate hand pose during training because of which the model gets confused about
which points are inside or outside. Moreover, some objects are only partially visible in
the cropped image, which is input to the model, due to which the pixel-aligned features
may not represent the object semantics well.

Fig. G: Visualizations of cross-section maps. We show the 2D cross-sections from
the intersection of the sampled planes with the 3D shape of the object. Each of these cross-
section map is 32x32 dimensional and we visualize 120 (8x15 grid) maps in each image,
with the red region denoting pixels inside the object and yellow region representing
pixels outside. These cross-sections are fed as input to the discriminator which is trained
to distinguish between the cross-sections from our model and cross-sections from the
synthetic shapes in the ObMan dataset (left). We show the cross-sections from our
predictions on the MOW dataset without the discriminator (middle) and with the
discriminator (right). We observe that holes in the cross-section maps and size of the
blobs get reduced after training with discriminator.
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