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Abstract. Prior works for reconstructing hand-held objects from a single
image train models on images paired with 3D shapes. Such data is
challenging to gather in the real world at scale. Consequently, these
approaches do not generalize well when presented with novel objects in
in-the-wild settings. While 3D supervision is a major bottleneck, there
is an abundance of a) in-the-wild raw video data showing hand-object
interactions and b) synthetic 3D shape collections. In this paper, we
propose modules to leverage 3D supervision from these sources to scale
up the learning of models for reconstructing hand-held objects. Specifically,
we extract multiview 2D mask supervision from videos and 3D shape
priors from shape collections. We use these indirect 3D cues to train
occupancy networks that predict the 3D shape of objects from a single
RGB image. Our experiments in the challenging object generalization
setting on in-the-wild MOW dataset show 11.6% relative improvement
over models trained with 3D supervision on existing datasets.

Keywords: hand-held objects · shape priors · multiview supervision

1 Introduction

While 3D reconstruction of hand-held objects is important for AR/VR [4,20] and
robot learning applications [39,40,47,48,68,71], lack of 3D supervision outside of
lab settings has made it challenging to produce models that work in the wild. This
paper develops techniques to improve the generalization capabilities of single
image hand-held object reconstruction methods by extracting supervision from
in-the-wild videos & synthetic shape collections showing hand-object interactions.

Collecting image datasets with ground truth 3D shapes for hand-held objects
is hard. Any visual scanning setups (via multiple RGB/RGB-D cameras or motion
capture) require full visibility of the object which is not available. Synthesizing
realistic hand-object interaction is an open problem in itself [28,31,49,65]. Manual
alignment of template shapes [5] is expensive, yet only approximate. Thus, there is
very little in-the-wild real-world data with ground truth 3D shapes for hand-held
objects. And while many past works have designed expressive models to predict
shapes of hand-held objects [22, 31, 73], they are all held back due to the limited
amount of real-world 3D data available for training and suffer from unsatisfactory
performance on novel objects encountered in the wild.

https://bit.ly/WildHOI
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Fig. 1: We propose modules to extract supervision from in-the-wild videos (Sec. 3.2) &
learn shape priors from 3D object collections (Sec. 3.3), to train occupancy networks
which predict the 3D shapes of hand-held objects from a single image. This circumvents
the need for paired real world 3D shape supervision used in existing works [22,73].

While in-the-wild images with paired 3D shapes are rare, there are a) plenty
of in-the-wild videos containing multiple views of hand-held objects [12, 17]
(Fig. 1), b) large catalogues of 3D object shapes [6] (Fig. 1). Shape collections
provide 3D supervision but lack realistic hand grasps, videos showcase realistic
hand-object interaction but don’t provide direct 3D supervision. Either by itself
seems insufficient, but can we combine supervision from these diverse sources to
improve generalization of single-image hand-held object reconstruction methods?

Let’s consider each cue one at a time. While videos show multiple views of
the object, we unfortunately don’t know the relative object pose in the different
views. Automatically extracting the object pose using structure from motion
techniques, e.g . COLMAP [56] doesn’t work due to insufficient number of feature
matches on the object of interaction. We sidestep this problem by using hand
pose as a proxy for object pose (Fig. 2). This is based on the observation that
humans rarely conduct in-hand manipulation in pick & place tasks involving
rigid objects. Thus, if we assume that the hand and the object are rigidly moving
together, then the relative 6 DoF pose of the hand between pairs of frames reveals
the relative 6 DoF pose of the object. This reduces the SfM problem to an easier
setting where the motion is known. Specifically, we use off-the-shelf FrankMocap
system [54] to obtain 6 DoF pose for the hand and consequently the object’s.
We then use our proposed 2D mask guided 3D sampling module (Sec. 3.2) to
generate 3D supervision for the object shape using object segmentation masks
(Fig. 2). This lets us train on objects from 144 different categories, where as most
methods currently train on only a handful of categories (< 20).
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While this works well for unoccluded parts of the object, this does not generate
reliable supervision for parts of the object that are occluded by the hand (Fig. 1).
This brings us to the 3D shape catalogues, which we use to extract shape priors.
This enables the model to learn to output contiguous shapes even when the
object is interrupted by the hand in the image, e.g . it can hallucinate a handle
for a jug even when it is covered by the hand, because jugs typically have one.
We adopt an adversarial training framework [16] to train a discriminator to
differentiate between real shapes (from ObMan [22]) and shapes predicted from
the model (Fig. 3). Unlike prior works [67] which train the discriminator on 3D
inputs, we instead propose a 2D slice-based 3D discriminator (Sec. 3.3), which is
computationally efficient and learns better fine-grained shape information.

Our overall framework consists of an occupancy network [43] that predicts
the 3D shape of hand-held objects from a single image. We train this model on
sequences curated from the VISOR dataset [13] and use the Obman dataset [22] to
build the shape prior. Training on diverse real world data outside of lab settings,
enabled by our innovations, leads our model (HORSE) to good generalization
performance. HORSE outperforms previous state-of-the-art models by 11.6% in
the challenging object generalization setting on MOW [5].

2 Related Work

Reconstructing objects in hands: Several works [9, 10, 22, 31, 73, 77] have
trained expressive architectures for predicting 3D shape from a single image using
paired real world 3D supervision. Fitting object templates [5, 21] or learned 3D
shapes [14,25, 72,74] to videos using appearance cues [5, 14, 21,25] or geometric
priors [72, 74] have also been explored. The most relevant work to ours is [73],
which uses paired 3D supervision from synthetic [22] and small-scale real-world
datasets to predict 3D shape from a single image. However, it does not generalize
to novel object categories in the wild due to limited 3D supervision. Instead,
we train our model on diverse object categories from in-the-wild videos by
extracting multiview 2D supervision and learning shape priors from existing
datasets, without any real-world 3D supervision. Note that our setting involves a
single image input at test time and we use in-the-wild videos for training only.
Hand-Object datasets with 3D object models: Existing real-world hand-
object datasets with 3D annotations are captured in lab settings and contain
limited variation in objects, e.g . HO3D [18]:10, H2O [32]:8, FPHA [15]:4, Frei-
HAND [81]:35, ContactDB [2]:50, ContactPose [3]:25, DexYCB [8]:20, GRAB [58]:
51, HOI4D [34]: 16 object categories. Collecting datasets with ground truth 3D
shapes is difficult to scale since it often requires visual scanning setups (multiple
cameras or motion capture). Synthesising realistic hand-object interaction is an
open problem in itself [28, 31, 49, 65]. In this work, we curate sequences from
in-the-wild VISOR dataset containing 144 object categories and design modules
to extract supervision for training occupancy networks. The closest to ours is
MOW with 120 objects that we only use to test models to assess generalization.
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Hand-Object Interactions in the wild: There is a growing interest in under-
standing hands and how they interact with objects around them. Researchers
have collected datasets [8, 18,19,22,32,34,58] and trained models for detecting
& segmenting hands and associated objects of interaction [13,57,62,63]. Recog-
nizing what hands are doing in images [7,46,79] is also relevant: through grasp
classification [31], 2D pose estimation [51,80], and more recently 3D shape and
pose estimation [21,22,53,54,61,73] for both hands and objects in contact.
3D from single image without direct 3D supervision. Several works
relax the need for direct 3D supervision by incorporating auxiliary shape cues
during training, e.g . multi-view consistency in masks [64], depth from single
image [26, 37, 78] or stereo [24], appearance [11, 27, 60, 76]. These have been
applied to reconstruction of category specific [27, 29, 30, 37] as well as generic
objects [11, 75, 76]. However, directly applying these approaches to hand-held
objects in the wild poses several challenges, e.g . unknown camera, novel object
categories, heavy occlusion, inaccurate depth estimates. In this work, we propose
modules to extract supervision from in-the-wild videos using object masks [13] &
hand pose [54] and learn priors from synthetic collections of hand-held objects [22].

3 Approach

We propose a novel framework for training 3D shape predictors from a single
image without using any real world 3D supervision. Following prior work [73],
we use implicit shape representation [43,45] for 3D objects.

3.1 Preliminaries

Consider the recent AC-SDF model for this task from Ye et al . [73]. Given an input
RGB image, AC-SDF uses a neural network to predict the SDF of 3D points. The
prediction is done in the hand coordinate frame obtained using FrankMocap [54],
which outputs (a) hand articulation parameters θa (45 dimensional MANO hand
pose [52]), (b) global rotation θw of the wrist joint w.r.t. camera, (c) weak
perspective camera θc, with scale factor s & 2D translation (tx, ty), which is
converted into a full perspective camera K. These can be used to project a 3D
point x into the image (f is the focal length) as xp = K[Tθwx+ (tx, ty, f/s)]

Given a 3D point x & image I, AC-SDF conditions the SDF prediction on: (a)
global image features from a ResNet-50 [23], (b) pixel-aligned features [55] from
intermediate layers of ResNet-50 at the projection xp of x in the image, (c) hand
articulation features obtained by representing x in the coordinate frame of 15
hand joints. This is realized as, s = F(x; I, θ,K). Training F requires sampling
3D points x around the object and corresponding SDF values s, θ = (θa, θw, θc,K)
are estimated from FrankMocap.

3.2 2D Mask Guided 3D Sampling

Training models with implicit shape representation require supervision in the
form of occupancy [43] or SDF [45] for 3D points sampled inside and outside
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a) Unposed video frames

b) Hand pose as proxy for object pose c) Multi-view supervision from posed images
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Fig. 2: Registering objects via hand pose and 2D Mask guided 3D sampling.
(a) Consider unposed frames from in-the-wild videos. (b) We use hand pose from
FrankMocap [54] as a proxy for object pose, thereby registering the different views. (c)
We then use 2D object masks for labeling 3D points with occupancy (Sec. 3.2). 3D
points that project into the object mask in all views are considered as occupied (green
triangles), all other points are considered unoccupied (red crosses). (3D object in the
figure is for visualization only, not used for sampling.)

the object. Note that the balanced sampling of points inside and outside the
object is an important consideration for training good predictors. While existing
approaches [22,31,73] on this task use datasets with paired 3D supervision (3D
object shape corresponding to 2D image), we operate in in-the-wild settings
which do not contain 3D supervision. Instead, we propose a 2D mask guided 3D
sampling strategy to obtain occupancy labels for training.

Consider multiple views {I1, . . . , In} of a hand-held object (Fig. 2), along
with their masks {M1, . . . ,Mn}. We can sample points x in 3D space and project
them into different views. Any point x which projects into the object mask in
all views is consider as occupied whereas if it projects outside the mask in even
one of the views, it is considered as unoccupied. Thus, we get occupancy labels
for a point x as sgt = ∩n

i=1M
xpi
i . Here, Mxpi

i =1 if xpi lies inside the mask Mi &
0 otherwise. Note that it is not possible to obtain SDF values in this manner,
since distance to the object surface cannot be estimated in the absence of 3D
objects models. While we can obtain 3D occupancy labels using this strategy,
there are two important considerations: camera poses are unknown (required for
projection) & how to balance the sampling of points inside & outside the object.
Camera pose: We assume that the hand is rigidly moving with the object. This
is not an unreasonable assumption, as humans rarely do in-hand manipulation in
pick & place tasks involving small rigid objects. Thus, the relative pose of hand
between different views reveals the relative pose of the object. This lets use the
hand pose predicted by FrankMocap {θ1, . . . , θn} to register the different views.
Balanced sampling: In the absence of 3D object models, a natural choice is to
sample points uniformly in 3D space. However, this leads to most points lying
outside the object because the object location is unknown. Instead, we sample
points in the hand coordinate frame. Consider the total number of points to be q.
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We adopt several strategies for balanced sampling for points inside (sgt = 1) and
outside the object (sgt = 0). We uniformly sample q/2 3D points x ∈ R3 in the
normalized hand coordinate frame and project these into all the available views.
Since all these q/2 points may not be occupied, we use rejection sampling to
repeat the procedure, for maximum of t = 50 times or until we get q/2 occupied
points. Also, all points projecting into the hand mask in all views and vertices of
the MANO [53] hand are labeled as unoccupied.

Formally, for images {I1, . . . , In} with object masks {M1, . . . ,Mn}, hand
masks {H1, . . . ,Hn} and MANO vertices {V1, . . . , Vn}, sgt for x is:

sgt =

{
1 if ∩n

i=1 M
xpi
i and ∩n

i=1 ¬H
xpi
i and ∪n

i=1 ¬V x
i

0 otherwise
(1)

where xpi is the projection of x, Mxpi
i =1 if xpi lies inside Mi, H

xpi
i =1 if xpi lies

inside Hi, V x
i = 1 if x belongs to Vi and ¬ is the logical negation operator.

Note that, due to hand occlusions and errors in FrankMocap predictions, it
is possible that some 3D points belonging to the object are not projected into
the object masks but we do not want to label these points as unoccupied. So we
disregard points which project onto the object mask in some views and hand
mask in other views as these points could belong to object due to hand occlusion.

This is reminiscent of the visual hull algorithm [33,42], which generates 3D
reconstruction by carving out space that projects outside the segmentation in
any view. Visual hull algorithms need multiple views at test time to generate any
output. In contrast, we are doing this at training time to obtain supervision for
F(x; I1, θ1,K1), which makes predictions from a single view.
Training: We use cross-entropy loss (CE) to train F using ground truth sgt:

Lvisual-hull = CE(F(x), sgt) (2)

To further regularize training, we also encourage the occupancy prediction
from different views to be consistent with each other. Since our predictions are
already in the hand coordinate frame, which is common across all views, this can
be done by minimizing Lconsistency for different views i & j of the same object.

Lconsistency =
∑

x∈R3,i̸=j

CE (F(x; Ii, θi,Ki),F(x; Ij , θj ,Kj)) (3)

3.3 2D Slice based 3D Discriminator as Shape Prior

We adopt an adversarial training framework [16] to build a prior on shapes of
hand-held objects and use it to supervise the training of the occupancy prediction
function F(x; I1, θ

a
1 , θ

w
1 ,K1). As such a prior can be challenging to hand-craft,

we build it in a data-driven way. We use 3D shape repository from synthetic
datasets [22], which contain more than 2.5K hand-held objects, to learn the prior.
Specifically, we train a discriminator D to differentiate between 3D shapes from
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Fig. 3: 2D slice based 3D discriminator. We learn data-driven 3D shape priors using
hand-held objects from ObMan dataset. We sample planes through the object (shown
above in blue), resulting in a 2D cross-section map. We pass occupancy predictions
on points from these cross-sections through a discriminator which tries to distinguish
cross-sections of predicted 3D shapes from cross-sections of ObMan objects (Sec. 3.3).

ObMan [22] and generated shapes as predicted by F . We derive supervision for
F by encouraging it to predict shapes that are real as per D.

A natural choice is to train the discriminator with 3D input, e.g . N ×N ×N
cube in 3D voxel space [67]. One way to do this is to sample N3 3D points in the
hand coordinate frame and run a forward pass through F to get the occupancy for
each of these points. However this is computationally expensive and often leads to
large imbalance as most points lie outside the object (we ablate this in Sec. 4.3).
Instead, we propose a novel 2D slice based 3D discriminator which operates on
arbitrary 2D slices. There are computed by taking the cross-section of 2D planes
with 3D shapes and sampling 3D points that lie on these 2D cross-sections. The
key intuition here is that the discriminator sees different randomly sampled 2D
slides during the course of training, which helps it to learn fine-grained shape
information. E.g . for a sphere, all cross-sections are circular but for a cylinder,
most are oval. This helps distinguish between different 3D shapes.
Sampling 2D slices: There are several important considerations in sampling
2D slices. First, uniformly sampling 2D planes often leads to most points lying
outside the object, which is not useful for training the discriminator. Instead, we
sample 2D planes that pass through the origin in the hand coordinate system.
Since the objects are in contact with the hand, the sampled points are more likely
to encompass the object. Then, we rotate the sampled 2D planes by arbitrary
angles so that they are not axis aligned to better capture fine-grained shape
information. We ablate all these design choices in Sec. 4.3. This sampling function
Z results in a set of 2D planes on which 3D points are uniformly sampled.
Training: We pass the sampled points from 2D slices of the generated 3D shape
through F to get the corresponding occupancy values Sgen. This represents the
generated 3D shape. We adopt the same strategy for representing 3D shapes
from ObMan (used as real shapes) but use the predictions Sreal of the occupancy
network overfitted on ObMan. As they come from a overfitted model, they
generally match the ground truth slices well but at the same time are soft and
prevent the discriminator from cheating.
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Fig. 4: VISOR visualizations. Using existing hand pose estimation techniques [54],
we are able to track the objects in relation to hands through time in in-the-wild videos.
We visualize these tracks along with object masks from the VISOR dataset [13]. This
form of data, where objects move rigidly relative to hands, is used to train our model
to learn 3D shape of hand-held objects.

We train the discriminator D to differentiate between Sgen & Sreal using the
least squares formulation [41] for discriminator loss. We derive supervision for
F by computing gradients through D on the occupancy values at the sampled
points to maximize the realism of the generated shapes.

LD
adv = [D(Sreal)− 1]2 + [D(Sgen)]2

LF
adv = [D(Sgen)− 1]2

Lshape-prior = λfLadv(F) + λdLadv(D) (4)

3.4 Training Details

We train F & D in an alternating manner with 2 iterations of F for every iteration
of D. The total loss for training our framework is:

LF = λvLvisual-hull + λcLconsistency + λfLF
adv

LD = λdLD
adv (5)

Following standard practice [73], we pretrain on synthetic ObMan. We train our
model jointly on ObMan (3D supervision, shape priors) & VISOR (2D supervision)
with a dataset ratio of ObMan:VISOR as 1:2. We use batch size of 64, learning
rate of 1e-5 across 4 NVIDIA A40 GPUs & loss weights as λv = 1, λc = 1,
λf = 0.25, λd = 0.25. Please refer to supplementary for more details.

3.5 Constructing Wild Objects in Hands Dataset

Our framework requires dataset containing multi-view images of rigid hand-object
interactions in the wild, with 3D hand pose and 2D object masks. To construct
such a dataset, we consider VISOR [13] which provides 2D tracks for hands,
objects they are interacting with and their segmentation masks. It contains a rich
set of hand-object interactions, e.g . taking out milk from the fridge, pouring oil
from bottles, kneading dough, cutting vegetables, and stirring noodles in a wok.
Our interest is in the 3D reconstruction of rigid objects which are in-contact with
a hand, but there are no 3D object annotations in VISOR. Hence, we process it
to prepare a dataset for training our model.
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Table 1: Generalization to novel objects in the wild. We report F-score at 5mm
& 10 mm, Chamfer distance (CD, mm) for object generalization splits on MOW. We
compare with AC-OCC & AC-SDF trained on different combinations of datasets with
full 3D supervision. Our approach outperforms baselines across all metrics without
using real-world 3D supervision (Relative % improvement w.r.t. best baseline in green).

Method Dataset and supervision used F@5 ↑ F@10 ↑ CD ↓

AC-OCC ObMan (Synthetic 3D) 0.095 0.179 8.69
AC-SDF [73] ObMan (Synthetic 3D) 0.108 0.199 7.82
AC-SDF [73] ObMan (Synthetic 3D) + HO3D (Lab 3D) 0.082 0.159 7.52
AC-SDF [73] ObMan (Synthetic 3D) + HO3D (Lab 3D) + HOI4D (3D) 0.095 0.193 7.43
HORSE (Ours) ObMan (Synthetic 3D) + VISOR (2D Masks) + Shape priors 0.121+10.7% 0.220+10.6% 6.76+13.5%

We first sample a subset of VISOR involving hand-object contact, using
available contact annotations. We select object tracks where only one hand is in
consistent contact with the object. This leaves us with 14768 object tracks from
the original VISOR dataset. We then manually filter this subset to select a subset
that showcases manipulation of rigid objects with a single hand. This leaves us
with 604 video snippets showing hands interacting with different objects.
Processing hands on VISOR: We rely on the 3D hand poses to set up
the output coordinate frame, compute hand articulation features, and more
importantly to register the different frames together [38,66]. These hand poses
are estimated using FrankMocap, which may not always be accurate. To remove
erroneous poses, we employ automated filtering using the uncertainty estimate
technique from Bahat & Shakhnarovich [1] following 3D human pose literature [50].
Specifically, we obtain 3D hand pose predictions on five different versions of the
image, augmented by different fixed translations . The uncertainty estimate for a
given image is computed as the standard deviation of reprojection locations of
MANO vertices across these 5 image versions. This sidesteps the need to hand-
specify the trade-off between translation, rotation, and articulation parameters
that are part of the 3D hand pose output. This leaves us with 473 video snippets
consisting of 144 object categories. This object diversity is 4× larger than existing
datasets [18,19, 32, 34, 69] used for our task, typically containing 10 to 32 object
categories. We refer to this dataset as Wild Objects in Hands, some example
object sequences are shown in Fig. 4. Note the incidental multiple views and
relative consistency in hand and object pose over the course of interaction.

4 Experiments

4.1 Protocols

We use 4 datasets for training (ObMan [22], VISOR [13], HO3D [18], HOI4D [34])
and 2 datasets (MOW [5], HO3D) for evaluation. Different methods are trained
on different datasets, depending on the specific evaluation setting.
Training datasets: ObMan is a large scale synthetic hand-object dataset with
2.5K objects and 3D supervision. HO3D & HOI4D are real world datasets collected
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Table 2: HO3D Object generalization.
We outperform AC-OCC & AC-SDF trained
on different datasets with 3D supervision.
Method Supervision (ObMan +) F@5 F@10 CD

AC-OCC - 0.18 0.33 4.39
AC-SDF - 0.17 0.33 3.72
AC-SDF MOW (3D) 0.17 0.33 3.84
AC-SDF MOW (3D) + HOI4D (3D) 0.17 0.33 3.63
Ours VISOR (Multi-view 2D) 0.20 0.35 3.39

Table 3: HO3D View generalization.
We outperform HO [22] & GF [31], trained
on HO3D with full 3D supervision.
Method Supervision (ObMan +) F@5 F@10 CD

AC-SDF - 0.17 0.32 3.72
HO [22] HO3D (3D) 0.11 0.22 4.19
GF [31] HO3D (3D) 0.12 0.24 4.96
Ours HO3D (Multi-view 2D) 0.23 0.43 1.41

in lab settings with 3D annotations. HO3D contains 10 YCB [82] objects whereas
HOI4D contains 16 object categories, out of which 7 are rigid. VISOR does not
contain any 3D supervision. Instead, we use the process described in Sec. 3.5, to
extract supervision from VISOR, resulting in 144 object categories.

The baselines are trained with different combinations of HO3D & HOI4D [34].
As our method does not require 3D ground truth, we do not use these datasets
for training. Instead, we use auxiliary supervision from Wild Objects in Hands
(Sec. 3.5) & learn shape priors using ObMan. VISOR does not have 3D annotations
and can not be used to train the baselines. Note that all models are initialized
from the model pretrained on ObMan for fair comparisons, following protocol [73].
Evaluation datasets: We focus on the challenging zero-shot generalization to
novel objects in-the-wild setting. We use MOW [5] dataset which contains images
from YouTube, spanning 120 object templates. Note that these types of images
have not been seen during training. To be consistent with prior work [73], we
also use HO3D for evaluation, consisting of 1221 testing images across 10 objects.
While [73] operate in view generalization setting, i.e., making predictions on
novel views of training objects, we also consider the more challenging object
generalization setting. Almost all of our experiments are conducted in the object
generalization setting where we assess predictions on novel objects across datasets.
Metrics: Following [59, 73], we report Chamfer distance (CD) and F-score at
5mm & 10mm thresholds. F-score evaluates the distance between object surfaces
as the harmonic mean between precision & recall. Precision measures accuracy
of the reconstruction as % of reconstructed points that lie within a certain
distance to ground truth. Recall measures completeness of the reconstruction
as % of points, on the ground truth, that lie within a certain distance to the
reconstruction. CD computes sum of distances for each pair of nearest neighbors
in the two point clouds. We report mean CD & F-score over all test objects.
Baselines: We compare our model with AC-SDF trained in supervised manner
using 3D ground truth on different combination of datasets in different settings:
(1) For object generalization on MOW in the wild, AC-SDF is trained on ObMan,
ObMan + HO3D, ObMan + HO3D + HOI4D, (2) For object generalization on
HO3D, AC-SDF is trained on ObMan, ObMan + MOW, ObMan + MOW +
HOI4D, (3) For view generalization on HO3D, AC-SDF is trained on ObMan
+ HO3D. We also compare with an occupancy variant of AC-SDF (AC-OCC)
and recent published methods with different forms of SDF representation, e.g .
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Table 4: Comparison with relevant
methods. Our approach also outperforms
gSDF, AlignSDF & DDFHO (trained in
the same setting as ours) in zero-shot gen-
eralization to MOW across most metrics.

Method F@5 ↑ F@10 ↑ CD ↓

AC-SDF [73] 0.108 0.199 7.82
AlignSDF [10] 0.099 0.182 8.30
gSDF [9] 0.107 0.197 7.50
DDFHO [77] 0.094 0.166 3.06
HORSE (Ours) 0.121 0.220 6.76

Table 5: 3D vs. 2D input to discrimi-
nator. Training with 3D inputs (at differ-
ent resolutions) perform worse, likely due
to coarse sampling resulting in very few
points inside the object.

Disc. input F@5 ↑ F@10 ↑ CD ↓

No disc. 0.117 0.216 6.93
10× 10× 10 0.120 0.218 7.29
16× 16× 16 0.115 0.209 7.79
32× 32× 32 0.104 0.191 7.83
2D slices 0.121 0.220 6.76

AlignSDF [10], gSDF [9], DDFHO [77]. Note that the VISOR dataset cannot be
used for training since it does not have 3D supervision. For the view generalization
setting on HO3D, we also compare with HO [22] & GF [31] trained with 3D ground
truth on ObMan + HO3D. Recent works [44, 70] on unsupervised reconstruction
of objects require several views or depth, which are not available in our setting.

4.2 Results

Object generalization in the wild:. We first examine if the auxiliary supervi-
sion from visual hull and shape prior is useful for generalization to novel objects
in the wild. We evaluate on MOW in Tab. 1 and compare with AC-OCC &
AC-SDF trained on different combinations of ObMan, HO3D, HOI4D datasets
with 3D supervision. Our approach provides gains of 24.3% compared to AC-OCC
(trained on ObMan) and 11.6% on AC-SDF (trained on ObMan). This shows
the benefits of our supervision cues in the wild over training on just large scale
synthetic data with 3D supervision. We also outperform AC-SDF trained on
ObMan + HO3D + HOI4D with full 3D supervision by 16.8% across all metrics.
This indicates that our supervision cues from in-the-wild VISOR are better than
using 3D supervision on lab datasets with limited diversity in objects. We also
outperform relevant methods that use different forms of SDF representations,
e.g . AlignSDF, gSDF & DDFHO across most metrics (Tab. 4). Note that our
contributions are orthogonal and could be combined with these works.
Adding 3D supervision to AC-SDF. In Tab. 1, we observe that adding
more data from HO3D & HOI4D to AC-SDF training did not help in zero-shot
generalization to MOW. Instead, the performance drops compared to AC-SDF
trained on ObMan. This is likely due to limited diversity in HO3D: 10 YCB objects,
HOI4D: 7 rigid object categories & the model overfitting to these categories.
Object generalization on HO3D: Our approach is better than AC-OCC &
AC-SDF trained on different datasets with 3D supervision (Tab. 2). This further
shows the benefits of auxiliary supervision from VISOR for object generalization.
Also, AC-SDF does not benefit from MOW & HOI4D. This could because HO3D
evaluates on 10 objects only and they may not be present in MOW or HOI4D.
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Table 6: Supervision quality on
HO3D. Automated filtering to remove
incorrect hand poses improves results &
using ground truth hand pose differs lit-
tle compared to predicted pose.1

F@5 ↑ F@10 ↑ CD ↓
HORSE (base setting) 0.234 0.434 1.41

no training on HO3D 0.175 0.329 3.72
w/o filtering 0.213 0.405 1.42
w/ ground truth pose1 0.243 0.444 1.39

Table 7: Role of different loss functions.
We report F-score at 5mm & 10mm, Chamfer
distance (CD, mm) for different variants of
our model on MOW. All losses are effective &
multiview supervision leads to largest gain.

LObMan Lvisual-hull Lconsistency Lshape-prior F@5 ↑ F@10 ↑ CD ↓
✓ 0.095 0.181 8.69
✓ ✓ 0.111 0.205 7.26
✓ ✓ 0.073 0.132 12.75
✓ ✓ 0.097 0.175 10.29
✓ ✓ ✓ 0.117 0.216 6.93
✓ ✓ ✓ ✓ 0.121 0.220 6.76

Occupancy vs SDF. We see that SDF formulation is better than occupancy
when trained with full 3D supervision (AC-OCC vs. AC-SDF). In contrast, we
find SDF training to be unstable (does not give meaningful predictions) with
auxiliary supervision. This could be because regressing continuous SDF values
with weak supervision is harder than binary classification for occupancy values.
View generalization results on HO3D. In Tab. 3, we see gains with using
supervision cues over just training on synthetic data, consistent with trends in
the object generalization setting. We also outperform HO [22] & GF [31], both
trained on HO3D using full 3D supervision. We outperform these methods even
without any images from HO3D (last row in Tab. 1 vs. GF & HO in Table 3),
likely due to use of more expressive pixel-aligned & hand articulation features.

4.3 Ablation Study

Analysis of supervision quality. We also observe in Tab. 3 that our method
is able to bridge more than 40% of the gap between no training on HO3D to
training with full 3D supervision. We further use the view generalization setting
to assess the quality of 2D object mask supervision used in our method in Tab. 6.
Our automated filtering of frames with inaccurate hand poses (as described in
Sec. 3.5) is crucial for good performance. Also, little is lost from using hand pose
as a proxy for object pose on the HO3D dataset. 1

Role of different loss terms: We experiment with multiple variants of our
model to assess the importance of different loss terms. We start with the AC-
OCC model trained on ObMan and gradually add Lvisual-hull, Lconsistency, and
Lshape-prior. From the results in Tab. 7, we observe that Lvisual-hull is more effective
than Lconsistency and using them together provides further benefits. Moreover,
Lshape-prior improves performance on top of Lconsistency and Lvisual-hull.
3D vs 2D input to discriminator: We also consider 3D volumes as input to the
discriminator (instead of 2D cross-sections). For this, we need to sample 64x64x64
1 While [73] uses similar contrast between predicted vs. ground truth hands to make

claims, we note that those claims & this result should be taken with a grain of salt.
FrankMocap is trained on HO3D, so its predictions on HO3D are better than they
would be on unseen data. As most of our models are trained on VISOR (not used for
training FrankMocap), our other experiments do not suffer from this issue.
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Table 8: Design choices for mask
guided sampling. Uniformly sampling
points is much worse than the rejection
sampling used in our method. Using neg-
ative points from hand masks is useful.

Sampling method F@5 ↑ F@10 ↑ CD ↓

Uniform 0.093 0.166 10.29
Ours (no hand points) 0.113 0.207 7.69

Ours 0.117 0.216 6.93

Table 9: Sampling method for 2D planes.
Sampling planes through origin of hand coor-
dinate system & rotated randomly performs
the best compared to sampling axis-aligned
planes either uniformly or through origin.

Sampling method F@5 ↑ F@10 ↑ CD ↓

Uniform (axis-aligned) 0.115 0.208 7.01
Origin (axis-aligned) 0.098 0.183 8.52

Origin (random rotation) 0.121 0.220 6.76

(=262144) points & run several forward passes of our model to get occupancies
Since this is computationally expensive, we sample points at coarser resolutions:
32x32x32, 16x16x16, 10x10x10. We use 32x32 size 2D slices, so 10x10x10 3D
volume has no. of points & takes similar compute. We see that 2D slices perform
better than 3D volumes (Tab. 5). Also, the performance gets worse with increase
in the sampled 3D volume, likely due to 3D sampling being so coarse that very
few points lie inside the object, thus unable to capture fine-grained shape.
Sampling 2D slices for discriminator: We ablate different design choices
(Sec. 3.3) in Tab. 9. We observe that sampling 2D planes through origin of the
hand coordinate system and rotated randomly performs the best compared to
sampling axis-aligned frames either uniformly or through origin.
Design choices for mask guided sampling: We run rejection sampling (with
hand & object masks) to sample points in the hand coordinate frame (Sec. 3.2).
We compare with 2 variants: uniformly sampling in the hand frame & removing
negative points from hand masks. We find our strategy to work the best (Tab. 8).

4.4 Visualizations

We compare the mesh generated by our model and AC-SDF (trained on ObMan-
best baseline) on zero-shot generalization to MOW (Fig. 5) and Core50 [35](Fig. 6).
For this, we sample points uniformly in a 64 × 64 × 64 volume, predict their
occupancies or SDF from the network and run marching cubes [36]. We project the
mesh into the input image & render it in different views. Our model captures the
visual hull of the object, as evidenced by the projection of the mesh onto the image,
and generates more coherent shapes than AC-SDF, which often reconstructs
disconnected and scattered shapes. More visualizations are in supplementary.

4.5 Limitations

Inaccurate hand pose. We use predictions from FrankMocap for hand pose &
camera parameters. Note that the sampled points do not cover the entire object
if the hand pose is not accurate, due to mis-projection into the image plane. This
leads to exclusion of points in certain parts of the object (Fig. 7).
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Fig. 5: Visualizations on MOW object generalization split. We show the object
mesh projected onto the image and rendered in different views for our HORSE model
and compare with the AC-SDF model trained on ObMan dataset with 3D supervision
(best baseline model). We also show the ground truth (GT) object model. We observe
that our model is able to predict the object shape more accurately than AC-SDF which
often reconstructs smaller and disconnected shapes.
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Fig. 6: Visualizations on zero-shot generalization to Core50 [35]. We show
the object mesh projected onto the image and rendered in different views on Core50.
HORSE predicts better shapes than AC-SDF (best baseline, often leads to artifacts).

Fig. 7: Sampled points do not cover the
entire object if hand pose is inaccurate.

Limited object views. Videos in the
wild often do not capture 360◦ view of the
object, e.g . kettle in Fig. 7. This is different
than lab settings where the interactions are
often constrained & multi-camera setup is
used to capture all sides of the object.

5 Conclusion

We present an approach for reconstructing hand-held objects in 3D from a single
image. We propose modules to extract supervision from in-the-wild videos &
learn data-driven 3D shape priors from synthetic ObMan to circumvent the need
for direct 3D supervision. Experiments show that our approach generalizes better
to novel objects in the wild than baselines trained using 3D supervision. Future
directions include jointly optimizing the hand pose with the object shape to deal
with inaccurate hand poses or incorporating additional cues, e.g . contact priors.
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