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We first provide additional dataset details used in the ex-
periments. We then present additional analysis of our results.
Next, we show qualitative comparisons of our LatentAct
model with the best baseline. Finally, the video contains an
overview of our key ideas and results.

1. Dataset Details

Statistics: We process the HoloAssist dataset into 4 gener-
alization settings: object-level, action-level, task-level and
scene-level, spanning 24 action categories, 120+ object cat-
egories with 800 tasks performed by different subjects in
2 geographical regions (Redmond and Zurich). HoloAssist
also provides temporally localized action clips with text de-
scription, with each atomic action lasting 1-2 seconds. We
report the number of sequences, object categories, action cat-
egories and tasks in different splits of all the generalization
settings considered in our experiments in Tab. 1.
3D Hand poses: Lab datasets compute 3D hand annota-
tions in 2 ways: marker-based motion capture setup (ARC-
TIC [1], GRAB [10]) or multiview optimization from RGB-
D (HO3D [2, 3], H2O [5]) or RGB (FreiHand [12]) images.
While marker-based MoCap setup gives sub-mm level accu-
racy, getting 3D annotations in the absence of these markers
in very challenging. Multiview optimization methods on lab
datasets typically require RGB-D images [2, 3] or human-
in-the-loop [12] and incur an error of around 1 cm. The
hand poses in these datasets is significantly simpler than our
setting due to constrained capture setup. For single RGB
images in the wild, SMPLify [7] fits SMPL-X [7] model
(consisting of body, hands & faces) using 2D features and
MoCap priors, resulting in 3D mesh vertex & joint error of
5-6 cm. This highlights the challenging nature of obtaining
3D hand annotations in the wild. We also operate in the
wild and our data engine uses HaMeR [8] to get the 3D hand
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poses from RGB images. While HoloAssist provides 3D
joints positions from hand sensors on the HoloLens [6], it is
not very accurate in hand-object interaction settings and is
not synchronized with the RGB images (non-linear offset be-
tween the hand sensor stream & RGB stream since the hand
sensor needs to maintain a constant fps). Thus, we can only
get an approximate measure of the accuracy of the 3D hand
poses using the hand sensor data from HoloLens. We notice
a 3D position error of 4.75 cm for the hand centroid, which
reinforces the challenging nature of obtaining 3D hand poses
in the wild, as observed in earlier works [7].
Contact Maps: We represent the contact points as a binary
mask over the hand mesh, i.e., contact maps. These are
estimated by projecting the 3D hand mesh vertices into the
image (using known camera parameters) and considering
each vertex which projects into the 2D contact region (over-
lap between hand & object masks with padding applied at
the boundary) as 3D contact point. Note that we do not
consider depth of different vertices during projections so 2
vertices (e.g. on the front and back of the finger) can project
to the same 2D pixel and be considered as contact points. To
verify the these contact maps, we consider a part-level classi-
fication task where each hand vertex is assigned to one of 16
parts (associated with different joints) of the hand (defined
using the adjacency matrix available in MANO [9]), i.e., a
part-level map. We consider the images from HO3D [2]
which provide 3D contact point annotations. We run the
contact module of our data engine on these images to get
the contact map and convert it into a part-level map. We
then compare the predicted joint map with the ground truth
part-level map, resulting in a precision of 0.67, recall of 0.95
and f1 score of 0.76. Note that these are computed only for
the images involving contact between the hand and object.

2. Additional Analysis
In our experiments, we study generalization w.r.t. 4 aspects:
novel objects, actions, tasks, and scene and report 3 metrics:
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Object-level Action-level Task-level Scene-level

Train Val Test Train Val Test Train Val Test Train Val Test

# Sequences 17518 1149 2607 18495 471 2308 17209 2106 1959 13028 4325 3921
# Object classes 108 7 16 127 40 80 129 57 58 67 112 109
# Action classes 24 20 17 17 2 5 24 16 17 22 22 21
# Tasks 710 65 82 674 41 142 685 86 86 464 569 529

Table 1. Dataset Statistics. We report the number of sequences, object categories, action categories and tasks in different splits of all the
generalization settings considered in our experiments.

MPJPE (M-PE: cm), MPJPE-PA (M-PA: cm) & F1 score
(for contact maps) to measure the accuracy of the predicted
trajectories. We adapt two recent methods from human pose
literature to work with image inputs, i.e., HCTFormer: ViT
encoder to extract features from image followed by a trans-
former decoder (similar to pose decoder of T2P [4]), HCT-
Diff: MDM [11] modified to predict interaction trajectories
from image inputs. We consider 2 variants of our setting:
hand is visible in the image, hand is not present (often the
case at the start of an interaction).

In the main paper, we report results for T=30 timesteps.
Here, we show results for T = 16 timesteps in Tab. 2 &
Tab. 3.We observe same trends as the main paper, i.e., La-
tentAct leads to consistent gains in absolute hand poses &
contact maps compared to other baselines and training In-
terPred with diffusion losses leads to better hand poses but
worse contact maps w.r.t. LatentAct, across all settings.

3. Visualizations

We show the predictions from LatentAct and the best base-
line on the task-level generalization for both forecasting
(Fig. 1, Fig. 2) & interpolation (Fig. 3, Fig. 4) settings for
3 timesteps (t=5, 10, 15). The left column shows the input
image with the contact point (projected in the image in cyan
blob), goal image (for interpolation setting) & action text.
The other columns show the hand poses & contacts for the
baseline, ground truth & our model: (a) Camera View: this
captures the placement of the hand around the contact point
in the camera view, (b) Another View: visualizations from
a different camera viewpoint, with the contact point at the
center, (c) Contact Maps are shown as red parts of the hand
mesh. LatentAct leads to better placement in the scene, hand
poses & sharper contact maps than the baseline.

We also show failure cases in Fig. 5. We observe that
predictions are near-static and hand poses are inaccurate in
some cases. Moreover, the MPJPE error is dominated by the
translation components, indicating high error in the absolute
hand position. These failure modes are visible in all models.
This also highlights the challenging nature of the task since
the model needs to predict the 3D trajectory from a single
image, which is inherently ambiguous.
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Method Task-level Object-level Action-level Scene-level

M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑

H
an

d
vi

si
bl

e

Forecasting
HCTFormer 7.63 2.48 0.73 7.72 2.51 0.75 7.89 2.60 0.75 7.79 2.55 0.74
HCTDiff 7.85 2.25 0.73 11.58 2.17 0.75 8.06 2.38 0.75 8.43 2.29 0.73
LatentAct (Ours) 7.41 2.43 0.76 7.30 2.43 0.77 7.39 2.62 0.77 7.53 2.53 0.75

Interpolation
HCTFormer 7.11 2.40 0.78 7.25 2.48 0.78 7.20 2.58 0.78 7.21 2.49 0.78
HCTDiff 7.20 2.21 0.78 7.38 2.30 0.78 7.36 2.44 0.79 7.56 2.35 0.77
LatentAct (Ours) 6.66 2.34 0.79 6.63 2.40 0.80 7.00 2.52 0.80 6.93 2.48 0.78

N
o

ha
nd

s

Forecasting
HCTFormer 7.64 2.43 0.73 7.72 2.50 0.74 7.53 2.55 0.75 7.72 2.52 0.73
HCTDiff 7.79 2.17 0.72 8.19 2.19 0.73 7.96 2.33 0.74 9.52 2.24 0.72
LatentAct (Ours) 7.25 2.40 0.76 7.41 2.45 0.77 7.60 2.56 0.77 7.43 2.50 0.75

Interpolation
HCTFormer 7.04 2.42 0.77 7.13 2.46 0.78 7.41 2.56 0.78 7.14 2.54 0.77
HCTDiff 7.53 2.27 0.77 7.57 2.26 0.77 7.92 2.38 0.77 7.41 2.32 0.77
LatentAct (Ours) 6.74 2.33 0.79 6.82 2.39 0.79 7.04 2.52 0.80 7.04 2.44 0.78

Table 2. Generalization results. We report MPJPE (M-PE: cm), MPJPE-PA (M-PA: cm) & F1-score in 4 generalization settings: novel
tasks, objects, actions & scene, to measure the accuracy of the predicted trajectories. We adapt two recent methods from human pose
literature to work with image inputs, i.e., HCTFormer: ViT encoded image features passed to a transformer decoder (similar to pose decoder
of T2P [4]), HCTDiff: MDM [11] modified to take image features as well. LatentAct leads to better absolute hand poses & contact maps.
Here, we consider T = 16 timesteps.

Method Task-level Object-level Action-level Scene-level

M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑

H
an

d
vi

si
bl

e Forecasting
LatentAct 7.41 2.43 0.76 7.30 2.43 0.77 7.39 2.62 0.77 7.53 2.53 0.75
LatentAct-Diff 6.85 2.37 0.73 7.17 2.40 0.61 7.40 2.64 0.75 7.63 2.47 0.74

Interpolation
LatentAct 6.66 2.34 0.79 6.63 2.40 0.80 7.00 2.52 0.80 6.93 2.48 0.78
LatentAct-Diff 6.55 2.17 0.78 7.06 2.26 0.78 6.91 2.44 0.79 7.57 2.36 0.78

N
o

ha
nd

s

Forecasting
LatentAct 7.25 2.40 0.76 7.41 2.45 0.77 7.60 2.56 0.77 7.43 2.50 0.75
LatentAct-Diff 7.23 2.43 0.72 7.46 2.32 0.75 7.69 2.46 0.74 7.51 2.39 0.73

Interpolation
LatentAct 6.74 2.33 0.79 6.82 2.39 0.79 7.04 2.52 0.80 7.04 2.44 0.78
LatentAct-Diff 6.85 2.27 0.77 7.24 2.31 0.77 7.45 2.38 0.78 6.97 2.34 0.78

Table 3. LatentAct-Diff trends. Training InterPred with diffusion loss leads to better hand poses but worse contact maps than LatentAct.
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Figure 1. Visualizations. We compare the predictions of LatentAct & the best baseline on a few examples from forecasting (no hand) setting
for 3 timesteps (t=5, 15, 25). The left column shows the input image with the contact point (projected in the image in cyan blob) & text
describing the action. The other columns show: (a) Camera View: predicted hand in the camera view with the contact point, this captures the
placement of the hand around the contact point, (b) Another View: this better visualizes the hand pose from a different camera viewpoint,
(c) Contact Maps are shown as red parts of the hand mesh. LatentAct leads to better orientation of hand & sharper contact maps than the
baseline.
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Figure 2. Visualizations. We compare the predictions of LatentAct & the best baseline on a few examples from forecasting (hand visible)
setting for 3 timesteps (t=5, 15, 25). The left column shows the input image with the contact point (projected in the image in cyan blob)
& text describing the action. The other columns show: (a) Camera View: predicted hand in the camera view with the contact point, this
captures the placement of the hand around the contact point, (b) Another View: this better visualizes the hand pose from a different camera
viewpoint, (c) Contact Maps are shown as red parts of the hand mesh. LatentAct leads to better orientation of hand & sharper contact maps
than the baseline.
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Figure 3. Visualizations. We compare the predictions of LatentAct & the best baseline on a few examples from interpolation (no hand)
setting for 3 timesteps (t=5, 15, 25). The left column shows the input image with the contact point (projected in the image in cyan blob), goal
image & text describing the action. The other columns show: (a) Camera View: predicted hand in the camera view with the contact point,
this captures the placement of the hand around the contact point, (b) Another View: this better visualizes the hand pose from a different
camera viewpoint, (c) Contact Maps are shown as red parts of the hand mesh. LatentAct leads to better orientation of hand & sharper contact
maps than the baseline.
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Figure 4. Visualizations. We compare the predictions of LatentAct & the best baseline on a few examples from interpolation (hand visible)
setting for 3 timesteps (t=5, 15, 25). The left column shows the input image with the contact point (projected in the image in cyan blob), goal
image & text describing the action. The other columns show: (a) Camera View: predicted hand in the camera view with the contact point,
this captures the placement of the hand around the contact point, (b) Another View: this better visualizes the hand pose from a different
camera viewpoint, (c) Contact Maps are shown as red parts of the hand mesh. LatentAct leads to better orientation of hand & sharper contact
maps than the baseline.
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Figure 5. Failure cases. We show the predictions of LatentAct & the best baseline on a few examples from all settings for 3 timesteps (t=5,
15, 25). The left column shows the input image with the contact point (projected in the image in cyan blob), goal image (for interpolation
task) & text describing the action. The other columns show: (a) Camera View: predicted hand in the camera view with the contact point,
this captures the placement of the hand around the contact point, (b) Another View: this better visualizes the hand pose from a different
camera viewpoint, (c) Contact Maps are shown as red parts of the hand mesh. We observe that predictions are near-static and hand poses are
inaccurate in some cases. Note that all the experiments are done in generalization settings.
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