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Figure 1. Interaction Trajectories. We tackle the novel task of predicting future 3D hand poses & contact maps, i.e., interaction trajectories,
from a single image showing the object, text describing the action and a 3D contact point on the object, in everyday activites. We show the
trajectory predicted by our method (LatentAct) & ground truth (GT) for 3 future timesteps along with the contact point. We consider 2
settings (top) Forecasting: single RGB view, action text & 3D contact points as input, (bottom) Interpolation: goal image is also provided.

Abstract

We tackle the novel problem of predicting 3D hand motion
and contact maps (or Interaction Trajectories) given a single
RGB view, action text, and a 3D contact point on the object
as input. Our approach consists of (1) Interaction Codebook:
a VQVAE model to learn a latent codebook of hand poses
and contact points, effectively tokenizing interaction tra-
jectories, (2) Interaction Predictor: a transformer-decoder
module to predict the interaction trajectory from test time
inputs by using an indexer module to retrieve a latent af-
fordance from the learned codebook. To train our model,

*Part of the work was done during an internship at Microsoft
†Joint last authors, indicates equal contribution

we develop a data engine that extracts 3D hand poses and
contact trajectories from the diverse HoloAssist dataset. We
evaluate our model on a benchmark that is 2.5-10× larger
than existing works, in terms of diversity of objects and in-
teractions observed, and test for generalization of the model
across object categories, action categories, tasks, and scenes.
Experimental results show the effectiveness of our approach
over transformer & diffusion baselines across all settings.

1. Introduction

Hands interact with objects in diverse ways, often requiring
varying skill levels to complete different tasks. Consider
teaching someone to repair a bike. It is challenging to specify
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what part to manipulate [41], what axis to flip a part over
such that it inserts well, etc. Instead, it is easier to directly
show how the hand should move and what parts of it should
make contact with the object over time to complete the task.
In this work, we study this problem. Given a single image
of an object, a 3D contact point, and a text indicating the
high-level action, we predict Interaction Trajectories, the
sequence of 3D hand poses and contact maps that specify the
initial and evolving hand interactions (Fig. 1), interpretable
by a human. We target interaction with everyday objects that
are often small, thin, transparent, occluded, and deformable
(Fig. 1) for which 3D object models may not be available.
Our work is a first step towards learning a motion prior
for diverse interactions in everyday activities, that can be
combined with 3D object models in the future.

In the absence of a 3D model, explicitly specifying con-
tact points in the scene grounds the hand-object interaction,
especially when there are multiple objects & 3D models are
unavailable. This information is provided in the form of a
3D contact point. Moreover, we observe that while objects
are diverse, hands interact with them in stylized ways [39].
There are only a few prototypical ways in which hands act
in everyday interactions. To exploit this property, we learn a
latent codebook of trajectories of 3D hand motions & contact
points (Interaction Codebook, Sec. 3.1), effectively tokeniz-
ing interaction trajectories using a VQVAE [48]. Intuitively,
the codebook learns the prototypical motion involved in
(say) screwing in a screw that can be repurposed into mo-
tion involved in (say) closing a bottle cap. The codebook is
indexed using visual inputs at test time to retrieve the clos-
est codebook entry (Indexer module, Sec. 3.2), and aligned
with the scene using the 3D contact point & visual context
from the image input (transformer-decoder based Interaction
Predictor, Sec. 3.3). We refer to our approach as LatentAct.

Since existing HOI datasets with 3D annotations have con-
strained setups, we use egocentric videos from the HoloAs-
sist dataset, showing everyday interactions. We leverage
recent advances in 3D hand pose estimation [30] and seg-
mentation in videos [36] to build a semi-automatic data
engine (Sec. 3.4) to extract trajectories of 3D hand poses
and contact maps from HoloAssist for 800 tasks performed
by ordinary users across 120 object categories and 24 ac-
tion categories. Our setup is 2.5X-10X larger than existing
works, e.g. HOT3D [2] (33 rigid objects), ARCTIC [11] (10
articulated objects), GRAB [43] (51 objects), HOI4D [28]
(16 object categories), in terms of diversity of objects and
interactions observed in everyday activities.

For evaluation, we focus on generalization to 4 aspects:
novel object categories, action categories, tasks and scenes.
We show results on 2 settings: (1) Forecasting: the model
generated predictions conditioned on the textual description
of the action, current image showing the object of interaction
and the 3D contact point at the current timestep. (2) Inter-

polation: Here, we also provide the goal image, along with
the previous inputs, showing the final state of interaction.
For each of these settings, we consider 2 variants: (a) hand
visible in the image, (b) hand is absent in the image (often
the case at start of interactions). Across this large-scale ex-
periment setting, we find our approach to generalize better
than transformer & diffusion baselines that directly learn to
predict interaction trajectories from images (Sec. 4.2).

2. Related Work
Generating HOI sequences: Recent works in HOI [3, 7,
13, 26, 44, 54, 55] have studied generating hand-object
motions in different settings, e.g. conditioned on textual
descriptions [7, 13], body poses [3, 13, 26, 44] for both
rigid [3, 7, 13, 26] and articulated objects [4, 55]. While
they focus on pick & place tasks involving simple & con-
strained interactions, we consider everyday activities, often
involving small, thin, textureless, occluded, articulated, de-
formable and dynamic objects in contact for which obtaining
3D models is non-trivial. Existing works in this domain use
either object-centric [4, 7] or hand-centric [44, 54] frame to
represent trajectories, this becomes a limitation in our setting
since 3D objects are unknown and hands may not be present
in the image (often the case at the start of the interaction).
Instead, we focus on predicting future 3D hand poses &
contact maps from a single image showing the object, text
describing the action & a 3D contact point to localize the
interaction, for diverse interactions in everyday activities.
HOI datasets: Existing works use datasets [11, 17, 18,
20, 24, 28] collected in controlled settings which provide
3D ground truth using MoCap [11, 43] or multi-camera se-
tups [17, 18, 20, 24, 28, 29]. However, the diversity of
objects and interactions in these datasets is limited due
to constrained nature of the capture setup. While recent
datasets [6, 9, 40] have explored natural interactions in ego-
centric videos [8, 15], they only provide 2D annotations,
e.g. segmentation masks [6, 9], 2D bounding boxes [40]
and grasp labels [6]. To mitigate this issue, we design a
data engine to extract 3D hand poses and contact maps
(Sec. 3.4) from egocentric videos showing everyday interac-
tions. Specifically, we extract 3D trajectories from HoloAs-
sist for 800 tasks performed by ordinary users across 120
object categories and 24 action categories, which is 2.5X-
10X larger than existing datasets [2, 11, 28, 43].
HOI representation: Hands are often represented using a
parametric mesh model, e.g., MANO [37], along with the
global translation and rotation of the wrist [7, 11, 13, 30,
31, 33, 51, 53, 54]. Given an object mesh, its 6DoF pose
can be denoted using translation & rotation [13, 55], signed
distance field [54] or using Basis Point Set (BPS [34]) dis-
tances [7, 26]. For hand-object contact, existing approaches
typically consider a canonicalized representation with the
hand [4, 54] or object [7] at the origin & use relative dis-
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Figure 2. We represent contact points as binary masks on the hand
mesh vertices. The hand mesh is represented in the camera coordi-
nate system, consisting of the local hand pose in the MANO [38]
coordinate frame and a global transformation from the MANO
frame to the camera frame. These hand poses and contact points
over several timesteps form interaction trajectories.

tances [7, 11, 12, 32, 44] or a distance field [54] from hand
joints to represent contact. Since 3D hand-object motion
annotations are unavailable for diverse objects, e.g., thin,
occluded, deformable, we instead focus on sequences of 3D
hand poses and contact maps, i.e., interaction trajectories.
Affordances: Gibson [14] developed the concept of affor-
dances as a set of functionalities that the environment fur-
nishes to an agent, which can be a human, a robot, an animal,
or hands. Affordances are typically represented as the con-
tact regions on the objects [1, 5, 23, 25, 27, 28, 43, 50]
& the agent [1, 19, 23, 42, 43, 47, 53, 53, 54]. They
have been explored in domains like robotics [1, 42], hu-
man interactions [19, 43, 47, 49] & hand grasp synthe-
sis [23, 42, 43, 53, 54]. Recent works have also proposed
generative models for affordances synthesis [49, 53, 54].

3. Method
Given a single RGB view, action text, and a 3D contact
point as input, we focus on predicting 3D hand poses &
contact points, i.e., interaction trajectories (Fig. 1), for fu-
ture timesteps. Our approach consists of: (1) Interaction
Codebook: learns a latent codebook of affordances using
a VQVAE (Fig. 3a), (2) Learned Indexer: maps the action
text, image (showing an object) & contact point inputs to the
codebook indices to obtain the corresponding embeddings
(Fig. 3b), (3) Interaction Predictor: takes the queried em-
beddings along with text, image and contact point inputs to
output the 3D interaction trajectory (Fig. 3b).
Hand mesh: We use the MANO [37] model to represent
the hand. It consists of pose θ and shape β parameters,
which can be converted to a 3D hand mesh. These mesh
vertices lie in the MANO coordinate system, which can be
transformed to the camera coordinate system at the first

timestep (reference frame) using a rotation and translation.
This gives us the hand trajectory in the reference frame.
Contact map: We represent the contact points as a binary
mask over the MANO hand mesh vertices, i.e., a 778 di-
mensional binary vector for each timestep, referred to as
contact map in the paper (Fig. 2). The contact points may
also change over time depending on the action, e.g. twisting.

Once the 3D hand mesh is transformed into reference
frame, we estimate the trajectory of the contact points by
computing the centroid of the contact points at each timestep.
The contact centroid in the reference frame is used as the
3D contact point input during training. We assume a 3D
contact point to be available in the first frame at test time.
To input this point, we create a 3D voxel grid of resolution
16 × 16 × 16. We take minimum and maximum values of
3D hand trajectory (along each axis, in the reference frame)
across all training sequences. This span is divided into 16
equal parts per axis, associating each voxel to 3D metric
range. It is kept fixed at train & test time. Thus, the center of
each voxel represents a 3D location in metric space, i.e. a 3D
metric grid, in the camera coordinate system. We create a 3D
gaussian heatmap centered at 3D contact point in this grid,
referred to as voxelized contact points in the paper. This
changes as the trajectory evolves. This is different than the
contact map (binary mask over mesh vertices).

3.1. Interaction Codebook (InterCode)
This is implemented as a VQVAE with a transformer
encoder-decoder architecture [16]. It consists of 3 modules:
Encoder: The hand and contact map trajectories for a fixed
time horizon T are passed to a transformer encoder to get
the feature embedding. These features are used to query
the codebook to obtain the relevant embeddings using L2
distance. Specifically, the input trajectory, consisting of
MANO parameters & contact maps, is first passed to a 1-
layer MLP to match the feature dimension of the transformer.
We use a 1-layer transformer encoder with 1 head & feature
dimension = 512. It outputs a T × 512 dimensional feature.
Latent codebook: It is initialized as a K ×E dimensional
matrix and is updated during training using exponential mov-
ing average of the embeddings output from the encoder,
following recent works [16]. Concretely, we use a multi-
layer residual VQVAE architecture [16]. We set the number
of quantizers for VQVAE to 6, K = 512 and E = 512.
When querying the codebook during training, sampling is
done using the Gumbel-SoftMax trick [21] to preserve dif-
ferentiability. We set the temperature of Gumbel-Softmax to
0.5 & inject noise at training for stochastic sampling. At test
time, argmax is used to get the closest codebook entry.
Decoder: It takes multiple inputs: (1) the latent embeddings
queried from the codebook (T × 512), (2) CLIP [35] em-
beddings of the text describing the action (512 dimensional
feature extended for T timesteps), (3) DeiT [46] embeddings
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(a) Interaction Codebook is a VQVAE model that learns a latent codebook
of 3D interaction trajectories, consisting of a transformer encoder-decoder
architecture. The encoder features are used to sample codebook indices and
corresponding embeddings which are passed to a decoder that also takes
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interaction trajectories.
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(b) We train an Indexer module to map the inputs at test time to the codebook
indices to extract the relevant embeddings. These are then passed to a
interaction predictor module that outputs the 3D interaction trajectories.
We consider 2 settings: (1) Forecasting: text describing the action, single
image & 3D contact point, (2) Interpolation: also providing the goal image
showing the final state of the interaction (not shown here for clarity).

Figure 3. Overview. Our framework involves a 2-stage training procedure: (left) Interaction Codebook: to learn a latent codebook of hand
poses and contact points, i.e., tokenizing interaction trajectories, (right) a learned Indexer & an Interaction Predictor module to predict the
interaction trajectories from single image, action text & 3D contact point. We use pretrained features for images (from DeiT [46]) and text
(from CLIP [35]). 3D contact point is input as a 3D gaussian heatmap in a 3D voxel grid (omitted here for clarity).

of the video showing the actions (T × 768), (4) voxelized
contact points at each timestep, which are passed through
four 3D convolution layers. We also pass in a 4D grid with
each voxel containing the 3D location of its center in met-
ric space, and process with 3D convolution layers. This
gives us a 32 dimensional feature vector from the contact
module. Concatenating all these input features, we get a
1824-dimensional joint feature that is passed through a 1-
layer MLP to change the dimensionality to 512 and then
fed to a transformer decoder (1-layer with 1 head & dropout
of 0.2). The query embeddings for the transformer decoder
are set as trainable parameters. It outputs a T × 512 feature
map which is passed to separate decoders for predicting the
MANO parameters and the contact map. We use a 2-layer
MLP to predict the MANO parameters and a 3-layer MLP
to predict the contact maps for the entire time horizon T .
Training: The loss function consists of several terms: (1)
Smooth L1 loss on the MANO parameters, (2) L1 loss on the
contact centroid, (3) L1 loss on the translation between the
future frame and first frame, (4) L1 loss on the 6D rotation
representation between the future frame and first frame, (5)
binary cross-entropy loss on the contact map predictions.

3.2. Learned Indexer
At test time, we need to query the learned codebook to get the
latent interaction embeddings. This is done using a learned
module which takes the test time inputs, i.e. text describing
an action, image showing an object & a 3D contact point, and
outputs a probability distribution over the codebook indices.
The indices and corresponding embeddings can be sampled
using the predicted probabilities. Note that the test time
inputs only consist of a single image and a 3D contact point,
unlike the entire trajectory used for training InterCode.

Specifically, we first compute features from different in-
puts: CLIP embedding of text (512), DeiT embeddings of

images (768), features from voxelized contact point, in the
reference frame, after passing through 4 3D convolutional
layers (32) and the 3D contact point. We concatenate these
features and process through a 2-layer MLP (1024 & 512
nodes) to match the input dimensions of the transformer
classifier module. It is implemented as a 1 layer, 1 head
transformer decoder layer that takes in learnable query em-
beddings and aforementioned features from different modal-
ities to output T × 512 dimensional features. These features
are then passed to a 3-layer MLP to output a probability
distribution over the indices of the codebook.
Training: It consists of a cross-entropy loss with ground
truth computed as the closest codebook indices (L2 distance)
from the encoder features of the InterCode module.

3.3. Interaction Predictor (InterPred)
Since the inputs at test time differ from the decoder inputs
of the InterCode module during training, we need a sepa-
rate learned module to predict the interaction trajectories. It
consists of a transformer decoder module with the following
inputs: (1) the latent embeddings queried from the codebook
using the learned prior, (2) CLIP embeddings of the text
describing the action, (3) DeiT embeddings of the image
showing the object, and (4) voxelized contact point in the
reference frame. These inputs are processed in the same
way as for Learned Indexer before passing to the transformer
decoder. The architecture is same as the decoder in Inter-
Code. While the inputs are different than InterCode, they
are passed to an MLP to match transformer dimension.
Training: The loss function consists of several terms: (1)
Smooth L1 loss on the MANO parameters, (2) L1 loss on the
contact centroid, (3) L1 loss on the translation between the
future frame and first frame, (4) L1 loss on the 6D rotation
representation between the future frame and first frame, (5)
binary cross-entropy loss on the contact map predictions.
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Figure 4. Data engine. (top) Object masks are extracted using
SAMv2 [36], 3D hand poses & masks (2D rendering of mesh) are
from HaMeR [30], contact points are computed by projecting the
3D hand points into the 2D contact region (intersection of hand &
object masks). (bottom) Generated object masks (highlighted in
white), 3D hand mesh & contact points for 3 timesteps.

3.4. Data Engine
Existing lab datasets are limited to simple interactions in
constrained setups. Instead, we use egocentric videos from
HoloAssist showing everyday interactions with rigid, artic-
ulated & deformable objects, e.g. operating machines, tool
use, kitchen tasks. It consists of 2k+ videos with temporally
localized atomic actions, e.g. grab, open, screw, mix, rotate,
align, slide, etc. with diverse objects. We extract these clips
of atomic actions and convert them into the required format
for training & evaluation. We consider 24 action categories
with 120 object categories spanning 800 tasks. This is 2.5-
10× larger than existing datasets, e.g. HOT3D [2] (33 rigid
objects), ARCTIC [11] (10 articulated objects), GRAB [43]
(51 objects), HOI4D [28] (16 object categories), in terms of
objects & diversity of interactions. While HoloAssist con-
tains diverse interactions, it does not provide 3D annotations
for hand poses & contact points. To extract these annotations,
we design a semi-automatic data pipeline (Fig. 4) using 2D
segmentation masks, 3D hand poses & 2D contact region.
Segmentation masks: We adopt a semi-automatic approach
for object masks, that involves clicking a point on the target
object in the first frame of a video & tracking the object mask
across the video using SAMv2 [36]. For 2D hand masks, we
render the 3D hand mesh (described next) into the image.
3D hand poses: We use the off-the-shelf HaMeR [30] model
to get 3D hand meshes in each video frame. HaMeR takes an
image crop around the hand as input (estimted from Hands23
model [6]). The predicted 3D mesh in each frame is trans-
formed to the reference frame using known intrinsics &
extrinsics available in the HoloAssist dataset.
3D Contact points: We first compute a 2D contact region
in an image as the overlap between the hand & object masks.
We add gaussian noise at the boundary to obtain a dense 2D
contact region. We back project the 2D contact region into
3D hand mesh to obtain 3D contact points on the hand mesh.

4. Experiments

4.1. Protocol

Task: We predict trajectories of MANO hand parameters
& contact map (a binary mask over 778 vertices of the
MANO [38] hand mesh) in 2 settings: (1) Forecasting: in-
put consists of a textual description of the action, a current
image showing the object of interaction, and a 3D contact
point. (2) Interpolation: We provide the goal image, along
with the previous inputs, showing the final state of interac-
tion. For each setting, we 2 two variants: (a) current image
with a hand, (b) current image without a hand (removed via
in-painting [52]) since the hand may not be visible before
the start of the interaction in many practical scenarios. We
only consider right hand motion in this work.
Generalization aspects: We study generalization capabili-
ties for 4 different settings: (1) Object categories, (2) Action
categories, (3) Novel tasks: a combination of object & ac-
tion categories, (4) Novel scene: we hold out videos from 1
location (data is collected in 2 locations). For each setting,
we create train, validation & test splits in the ratio 80:10:10.
Metrics: (1) MPJPE: Mean Per Joint Position Error between
predicted & ground truth hand joints, averaged over all future
timesteps. (2) MPJPE-PA is the procrustus aligned variant,
which optimizes for a single rotation, translation & scale
to align the entire trajectory with ground truth trajectory,
before computing MPJPE. (3) F1 score: harmonic mean of
precision & recall to measure accuracy of contact maps .
Baselines: Since no prior works predict interaction trajec-
tories from image input, we adapt 2 recent baselines from
human pose literature to work in our setting: (1) HCTFormer:
The input image is encoded using a ViT [10] encoder fol-
lowed by a transformer decoder, similar to the pose decoder
used in T2P [22]. TCP decoder takes in trajectory query (for
global intent), pose query & pose embeddings. In our case,
intent comes from text. We replace pose embeddings with
{image, contact, text} features, pass them to an MLP & then
feed to {TRM, MLP} modules, as in TCP. (2) HCTDiff: We
modify the motion diffusion model (MDM [45]) for hand
trajectory and contact map prediction. For this, we change
conditioning to use {image, text, contact} features but diffu-
sion architecture is same. Both HCTFormer and HCTDiff
are trained in the same setting as ours for fair comparisons.

Existing methods that use object-centric representa-
tions [4, 7] can not be applied in our setting since we do
not have the 3D object models. Hand-centric representa-
tions [44, 54] are also not suitable in our setting since the
hand is not always visible in the input image at test time.

Our approach involves a 2-stage training procedure: In-
terCode followed by Indexer & InterPred, from different
inputs. We train with both transformer & diffusion variants
for InterPred, referred to as LatentAct & LatentAct-Diff re-
spectively. LatentAct-Diff uses same InterCode & Indexer as



Method Task-level Object-level Action-level Scene-level

M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑
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Forecasting
HCTFormer 8.32 3.06 0.72 8.70 3.19 0.72 8.59 3.25 0.73 8.52 3.09 0.72
HCTDiff 8.42 2.75 0.72 9.01 2.88 0.73 9.11 3.10 0.74 9.49 2.84 0.71
LatentAct (Ours) 7.61 2.99 0.75 8.09 3.06 0.75 8.14 3.32 0.77 7.87 3.04 0.74

Interpolation
HCTFormer 7.52 3.02 0.76 8.10 3.10 0.76 7.77 3.29 0.78 7.54 3.00 0.76
HCTDiff 8.30 2.72 0.77 8.52 2.91 0.78 8.38 3.16 0.78 8.60 2.81 0.77
LatentAct (Ours) 6.72 2.87 0.80 7.48 3.02 0.78 7.25 3.19 0.80 7.27 2.93 0.78

N
o

ha
nd

s

Forecasting
HCTFormer 8.34 2.95 0.72 8.85 3.02 0.73 8.54 3.21 0.74 8.53 3.05 0.72
HCTDiff 8.85 2.65 0.72 9.74 2.81 0.72 9.50 3.11 0.74 9.21 2.74 0.71
LatentAct (Ours) 7.93 2.97 0.76 8.26 3.01 0.76 8.19 3.28 0.77 7.90 3.00 0.75

Interpolation
HCTFormer 7.30 2.95 0.76 8.42 3.15 0.76 8.01 3.30 0.77 7.29 2.99 0.77
HCTDiff 8.27 2.76 0.76 8.68 2.91 0.76 9.33 3.10 0.78 10.02 2.82 0.76
LatentAct (Ours) 7.13 2.89 0.79 7.24 2.97 0.79 7.44 3.21 0.80 7.12 2.89 0.78

Table 1. Generalization results. We report MPJPE (M-PE: cm), MPJPE-PA (M-PA: cm) & F1-score in 4 generalization settings: novel
tasks, objects, actions & scene, to measure the accuracy of the predicted trajectories. We adapt two recent methods from human pose
literature to work with image inputs, i.e., HCTFormer: ViT encoded image features passed to a transformer decoder (similar to pose decoder
of T2P [22]), HCTDiff: MDM [45] modified to take image features as well. LatentAct leads to better absolute hand poses & contact maps.

LatentAct but different InterPred, i.e., an iterative denoising
model from MDM instead of a single step prediction. The
denoising is done in latent space of the codebook followed
by a decoder to generate trajectories. It is trained using L2
loss on denoised embedding and loss in Sec. 3.3.

4.2. Results
Generalization results: First, we study if the model can
generate trajectories from the text describing the action, sin-
gle image & 3D contact point, i.e., Forecasting task. In the
absence of a goal, this is quite challenging and inherently
multimodal in nature. We compare with the GT trajectories
for all 4 generalization aspects: novel objects, actions, tasks
& scene. We report MPJPE, MPJPE-PA for hand trajectories
& F1-score for contact maps. We observe that our approach
leads to consistent gains in absolute hand poses & contact
maps. We show results (Tab. 1) on 2 variants of the task,
(1) hand visible in the image, (2) hand absent in the image,
often the case at the start of interactions. The hand visible
in the image makes the tasks slightly easier since the initial
pose is visible, as also evident from the results.

Next, we also provide the goal image, along with the pre-
vious inputs, showing the final state of interaction, referred
to as goal-conditioned interpolation. This is slightly easier
than the Forecasting task since the final state of the interac-
tion is also provided. The results (Tab. 1) on 2 varaints of
the task, (1) hand visible in the image, (2) hand absent in the
image, show similar benefits as in Forecasting.

These results are for T=30 timesteps. We also report
results for T=16 in the supplementary with similar trends.
Results on ARCTIC: We also show results (Tab. 2) on
ARCTIC [11] to check if LatentAct leads to gains on existing

Method MPJPE↓ MPJPE-PA↓ F1↑
HCTFormer: trained on ARCTIC 15.76 3.61 0.36
LatentAct: trained on ARCTIC 14.77 3.76 0.41
LatentAct: zero-shot from Holo 15.72 3.71 0.19
LatentAct: Codebook & Indexer from Holo 15.36 3.58 0.45

Table 2. HoloAssist is significantly larger than ARCTIC in terms
of contact sequences leading to benefits in zero-shot generalization
& transferring models trained on HoloAssist to ARCTIC.

lab datasets. ARCTIC has accurate 3D labels but is limited
in scale (10× smaller than HoloAssist for contact sequences).
When trained only on ARCTIC, we find the trends to transfer
from HoloAssist, i.e., LatentAct is better than HCTFormer.
Using codebook & indexer trained on HoloAssist further
benefits models trained on ARCTIC. Zero-shot transfer from
HoloAssist is competitive to models trained on ARCTIC.
Benefits of Interaction Codebook: We verify if the 2-stage
training procedure is beneficial by comparing with single-
stage training methods HCTFormer & HCTDiff in Tab. 4
and observe consistent benefits. Another option is to retrieve
an interaction trajectory from the training set, conditioned
on the input. However, this does not scale well with the
training data & is computationally expensive, e.g. the learned
codebook in InterCode has 512 entries whereas the training
dataset has ∼15K sequences, which is significantly larger.
Contact maps helps hand predictions: Here, we train the
InterCode & InterPred modules with only the hand pose loss,
i.e., removing the loss on contact maps. In Tab. 5, we observe
that loss on contact maps helps with hand predictions.
Trends with LatentAct-Diff:. Training InterPred with dif-
fusion losses leads to better hand poses but worse contact
maps compared to LatentAct, across all settings (Tab. 3).



Method Task-level Object-level Action-level Scene-level

M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑ M-PE(cm)↓ M-PA(cm)↓ F1↑

H
an

d
vi

si
bl

e Forecasting
LatentAct 7.61 2.99 0.75 8.09 3.06 0.75 8.14 3.32 0.77 7.87 3.04 0.74
LatentAct-Diff 7.90 3.03 0.71 8.49 3.20 0.72 8.29 3.34 0.72 8.32 3.10 0.72

Interpolation
LatentAct 6.72 2.87 0.80 7.48 3.02 0.78 7.25 3.19 0.80 7.27 2.93 0.78
LatentAct-Diff 6.53 2.62 0.78 7.23 2.81 0.78 7.11 3.10 0.79 6.70 2.84 0.78

N
o

ha
nd

s

Forecasting
LatentAct 7.93 2.97 0.76 8.26 3.01 0.76 8.19 3.28 0.77 7.90 3.00 0.75
LatentAct-Diff 7.82 2.89 0.71 8.63 3.06 0.71 8.19 3.15 0.72 7.93 2.96 0.73

Interpolation
LatentAct 7.13 2.89 0.79 7.24 2.97 0.79 7.44 3.21 0.80 7.12 2.89 0.78
LatentAct-Diff 6.60 2.65 0.76 7.73 2.78 0.76 7.42 3.04 0.78 6.89 2.71 0.77

Table 3. LatentAct-Diff trends. Training InterPred with diffusion loss leads to better hand poses but worse contact maps than LatentAct.

Method MPJPE↓ MPJPE-PA↓ F1↑
HCTFormer 7.52 3.02 0.76
HCTFormer + InterCode 6.72 2.87 0.80
HCTDiff 8.30 2.72 0.77
HCTDiff + InterCode 6.53 2.62 0.78

Table 4. Two stage training with InterCode improves over single-
stage training methods HCTFormer & HCTDiff. Note that HCT-
Former + InterCode is same as LatentAct.
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Figure 5. More training data helps both LatentAct & HCTFormer.

Dataset scale: In Fig. 5, we see that both LatentAct &
HCTFormer improve with larger training dataset size.

4.3. Visualizations
We compare the predictions of LatentAct & the best baseline
on a few examples from task level generalization setting
(Fig. 6) for both forecasting & interpolation for 3 timesteps
(t=5, 15, 25). The left column shows the input image with
the contact point (projected in the image in cyan blob), goal
image (for interpolation task) & text describing the action.
The other columns show: (a) Camera View: predicted hand
in the camera view with the contact point, this captures the
placement of the hand around the contact point, (b) Another
View: this better visualizes the hand articulation from a
different camera viewpoint, (c) Contact Maps are shown
as red parts of the hand mesh. LatentAct leads to better
orientation of hand & sharper contact maps than the baseline.
Note that these tasks are not seen during training. More
visualizations & analysis are provided in the supplementary.
Limitations: We do not predict the object state change.
While 3D object models are not available, alternatives like

Method MPJPE↓ MPJPE-PA↓ F1↑
HCTFormer 7.52 3.02 0.76

− no contact map 7.65 2.89 –
LatentAct 6.72 2.87 0.80

− no contact map 7.76 2.91 –
HCTDiff 8.30 2.72 0.77

− no contact map 8.43 2.78 –
LatentAct-Diff 6.53 2.62 0.78

− no contact map 7.09 2.90 –

Table 5. Loss on contact maps helps hand predictions for all models.

predicting 2D object masks could be explored. While we
assume a 3D contact point to be available, it can also be
estimated using off-the-shelf depth models & ground truth
intrinsics to get the 3D location of a 2D point that can be
prompted by a user (e.g. by clicking a point on the image).
Our experiments measure whether the predicted interaction
trajectory is accurate, but it does not account for the multi-
modal nature of future prediction. The annotations in our
work are programatically generated and may not be accurate
in all cases. While we filter out the erroneous cases, using a
better annotation tool [47] would be beneficial.

5. Conclusion
Our model predicts interaction trajectories, i.e. 3D hand mo-
tion & contact maps, from single RGB view, action text
& 3D contact point as input. It consists of: (1) Interac-
tion Codebook: a VQVAE to learn a latent codebook of 3D
hand poses & contact points, i.e., tokenizing interactions.
(2) Interaction Predictor: a transformer-decoder module to
predict the interaction trajectory from test time inputs, by
using an indexer module to retrieve a latent interaction from
the learned codebook. Our large-scale experiments on the
diverse HoloAssist dataset show benefits across 4 general-
ization settings. Our work is a first step towards learning a
motion prior on interaction sequences and can be augmented
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Figure 6. Visualizations. We compare the predictions of LatentAct & the best baseline on a few examples from the task level generalization
setting for both forecasting & interpolation for 3 timesteps (t=5, 15, 25). The left column shows the input image with the contact point
(projected in the image in cyan blob), goal image (for interpolation task) & text describing the action. The other columns show: (a) Camera
View: predicted hand in the camera view with the contact point, this captures the placement of the hand around the contact point, (b) Another
View: this better visualizes the hand pose from a different camera viewpoint, (c) Contact Maps are shown as red parts of the hand mesh.
LatentAct leads to better orientation of hand & sharper contact maps than the baseline. Note that these tasks are not seen during training.

with object trajectories with better 3D models in the future.
Our data pipeline is modular and can also incorporate better

hand & segmentation models in future.
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