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In this document, we first describe issues with the use of crops in hand pose
estimation (Sec. A) and provide additional implementation details about the
architecture (Sec. B.1) & training protocol (Sec. B.2). We then present additional
analysis of results (Sec. C) and describe our Epic-HandKps dataset (Sec. D).
Next, we provide qualitative comparisons (Sec. E) of our WildHands model with
FrankMocap [24] (Fig. E) & HaMeR [20] (Fig. D) on Epic-HandKps and with
ArcticNet [7] on ARCTIC (Fig. G). We also show failure cases of WildHands on
both Epic-HandKps (Fig. F) & ARCTIC (Fig. H) and more visualizations of
perspective distortion induced ambiguity in hands (Fig. I).

A Issues with Use of Crops in Current Hand Pose
Estimation Methods

As noted in the main paper, the current practice of using crops around hands as
input to the network suffers from 3 potential issues.

In exocentric views, as the camera can be arbitrarily placed with respect to
the hand, the hand location in the image doesn’t carry any signal. However, in
an egocentric setting as the camera is mounted on the head, the 2D location of
the hand in the image is indicative of the hand pose. Thus, it may be useful to
also use the location of the hand in the image as an additional input into the
network.

The second issue comes from the observation that the 3D that best explains
the 2D appearance while assuming that the hand is directly in front of the camera
may not explain the same 2D appearance at another location in the camera’s
field of view. We explain this further in Section A.1 and Figure A.

The third issue is a manifestation of ambiguity in predicting 3D from 2D
image crops as described in past work [21]. At a high-level, [21] note that the
same 2D image pattern at different locations in the image can correspond to
different underlying 3D shape. This poses a problem when training a neural
network that consumes the 2D crop as input to predict the 3D shape, from the
same input the network is expected to predict different 3D outputs. We analyze
this ambiguity in Section A.2 and Figure B.

Our use of KPE provides the neural network with information about the
location that a crop comes from and circumvents these afore mentioned issues.

https://bit.ly/WildHands
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Fig. A: Given an image (shown in (a)) with a bounding box around a hand to predict
3D pose for, FrankMocap [24] and HaMeR [20] feed the crop (shown in (b)) to a neural
network (shown in (c)). The neural network outputs the 3D shape, articulation and
global pose, denoted by β, θlocal, θ

trans
global, θ

rot
global in (d.1). As the neural network is trained

with 2D reprojection losses that assume a made up camera with the principal point
being at the center of the crop and a fixed focal length, these predictions (shown in
(d.2)) when projected according to this made-up camera, conform well with the 2D
image as shown in (d.3). FrankMocap and HaMeR then convert these predictions to the
actual camera frame as shown in (e) by adjusting the translation part of global pose
to θ̃trans

global, such that the projection of the root joint shifts by the same amount as the
crop’s shift in the image. As the visualizations in (f.3) show, the 3D projection
doesn’t conform to the appearance of the 2D crop anymore! This is because
when the hand shifts in the camera’s field of view it incurs perspective distortion causing
it to project differently from when it is viewed head on. Note the differences in the
projected hand shape in (d.3) and (f.3). The 3D that correctly explains the crop when
viewed head on, necessarily can’t explain the appearance of the crop where it actually
is in the image.
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A.1 3D that explains a 2D crop at a given location in image doesn’t
explain the 2D of the same crop at another location in the image

FrankMocap [24] and HaMeR [20] uses crops around hand as input to the neural
network. The neural network resizes the crop to a fixed size and uses it to predict
the 3D shape β, local 3D pose θlocal and global 3D pose θglobal. Here, we break
the global pose into a translation and rotation component θtrans

global and θrot
global.

The network is trained with losses that measure similarity in local and global
3D shape, 3D keypoints and 2D projections of 3D joints in the 2D image. For
the 2D keypoint reprojection loss, the model assumes a made up camera matrix
with a principal point at the center of the crop and a fixed focal length of 5000.
Thus, the model learns 3D shapes and articulation such that the 3D keypoints
when projected to 2D using this made-up camera, they line up with the ground
truth 2D keypoints.

At inference time, FrankMocap [24] and HaMeR [20] then adjusts the predic-
tion to account for the location and scale of the hand crop and the focal length of
the camera (if known). Specifically, they adjust the translation of the root joint,
i.e. θtrans

global to say θ̃trans
global. It rescales the Z coordinate by inverse of the scale of

the actual box, and modifies the X and Y coordinates such that after adjustment
the root joint reprojects to the shifted box. Figure A shows the process.

The adjustments made by FrankMocap and HaMeR merely place the root
joint at the correct location. They fail to account for the perspective distortion
that varies across the image. The 3D hand that accurately conforms to the 2D
keypoints when placed at the center of the field of view (d.3), will necessarily not
conform to the shifted version of these keypoints (f.3). While this effect is always
present, it is particularly severe for hands in egocentric images due to large field
of view and hands being close to the camera.

A.2 Ambiguity in Absolute and Root-relative 3D Shape due to
Cropping

Depending on the location in the camera’s field of view, the same object looks
different due to perspective distortion. Prakash et al . [21] note that this distortion
creates ambiguity in perceiving shape from image crops, i.e. the same crop could
correspond to different underlying absolute and root-relative 3D shapes depending
on its location. Note that 3D from a single image is already an under-constrained
task. Working with image crops, without keeping track of where the crop came
from, further exaggerates this ambiguity. Recent work [16] makes a similar
observation about ambiguity in absolute pose for human pose. In this section, we
check if using crops around hands in egocentric images also lead to an additional
ambiguity in absolute and root-relative 3D hand shape.

To answer this question, we analyze right hands in the ARCTIC [7] dataset
since it contains 3D annotations for hand joints at different locations in the image.
Consider the following distances between a pair of hands:

– Pixel distance between hand crops, measured as the pixel distance
between the centroid of the 2D hand keypoints from the two hands.
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Fig. B: As compared to the reference hand in (a), the hand shown in (b) has a similar
2D shape (as measured by 2D keypoint error) but a very different 3D shape (as measured
using root-relative 3D keypoint error). Fingers appear short due to being foreshortened
in (a) but being further bent in (b). Thus, perspective distortion leads to “the same
crop corresponding to different underlying 3D shape.” Section A.2 discusses that this
ambiguity (2D shape being similar but 3D shape being different) arises from ignoring
the crop’s location in the image. As we let crops go farther away, we start finding more
such ambiguity (red points in b.1) than if we restrict to close-by crops (blue points in
b.1), as pointed by the cyan circle. The histogram shown in (b.2) visualizes this in a
different way to highlight (cyan arrow) the many more ambiguous cases in crops far
away (red region) than in crops close by (blue region). (c.1) and (c.2) presents the same
analysis but for absolute 3D shape, and finds much more ambiguity in absolute 3D shape
than in root-relative 3D shape. (b.3 and c.3) presents this histogram aggregated over
200 randomly chosen reference hands from the ARCTIC dataset. Ambiguity is not just
present in the reference hand in (a), but exists across the dataset. KPE mitigates this
ambiguity. Control experiments in Table 4 show improvements in relative
and absolute pose across H2O, Assembly, Ego-Exo4D, and Epic-HandKps
datasets. In line with histograms in this figure, there is a larger improvement in
absolute pose than in root relative pose.
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– Centered 2D keypoint error, measures the average pairwise pixel distance
between 2D keypoints from the 2 hands, after bringing their centroids to the
origin.

– Absolute 3D keypoint error, as the residual between 3D keypoints to
measure 3D shape mismatch between hands,

– Root relative 3D keypoint error, as the residual between the 3D keypoints
after aligning the root joints in location and orientation.

Figure B (c.1) and Figure B (c.2) plots these distances between a reference
hand (shown in Figure B (a)) and all other hands in ARCTIC. X-axis plots the
centered 2D keypoint error (in pixels), Y-axis plots the 3D keypoint error between
hands (absolute in a.1 and root-relative in a.2, in mm). The color of the point
denotes the pixel distance between the hand crops.

When constraining the crop to be around the reference hand location (blue
points in the plots) the 3D error is small, i.e. there is only a small amount of
ambiguity. However, when we let the crop be anywhere in the image (the red
points), even though the 2D keypoints within the crop are very similar, the 3D
hand pose is quite different. The additional height of the red points (denoted by
the cyan circles), denotes the additional ambiguity induced by ignoring the 2D
location of the hand crop in the visual field on top of the ambiguity of making
3D inferences from 2D images (depicted by the blue points). Both absolute and
root-relative 3D shape exhibit ambiguity.

Figure B (c.2) and Figure B (d.2) plots the distribution of the points in
Figure B (c.1) and Figure B (d.1). Note again the additional ambiguity when
crops can be anywhere in the image (red regions) vs . when the crops are close to
the reference hand (blue regions) as pointed by the cyan arrows.

Figure B (c.3) and Figure B (d.3) aggregate these histograms over 200 ran-
domly sampled hands from the ARCTIC dataset. Ambiguity is not just present
in the reference hand in Figure B (a), but exists across the dataset.

Figure B (b) shows an example hand that has high 3D shape error but low
centered 2D keypoint error. Fingers appear short due to being foreshortened in
Figure B (a) but being further bent in Figure B (b).

To account for the larger number of crops present at arbitrary locations in
the image compared to crops that are close to the reference hand, the distance in
the plots in Figure B were computed after a PnP alignment [15] between the 2D
keypoints for the reference hand and all 3D hands in ARCTIC. For each hand
in ARCTIC, we do this alignment two ways. We do one alignment the default
way, where PnP searches for the 3D rotation and translation that best aligns
a hand to the 2D keypoints of the reference hand. We do another alignment
that additionally allows for an arbitrary 2D shift in the hand keypoints for the
reference hands. This balances the data and thus factors out differences due to
spatially varying density of hands across the image.

Figure I shows qualitative examples for the hand shape and the corresponding
location in the field of view after the PnP alignment to the reference 2D keypoints
with appropriate shifts. It also shows similar histograms and visualizations without
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the PnP alignment. Figure J and Figure K, show similar plots and visualization
for another 2 hands from ARCTIC.

B Implementation Details

B.1 Architecture

We build on top of the ArcticNet-SF [7] and FrankMocap [24] models. Here, we
provide additional details about the encoder, intrinsics-aware positional encoding
(KPE [21]), decoder, bounding box predictor used in the architecture.
Encoder: Our models uses hand crops as input (resized to 224× 224 resolution),
which are processed by a ResNet50 [12] backbone to get 7 × 7 × 2048 feature
maps. The left and right hand crops as processed separately but the parameters
are shared. We also use global image features in our model, computed by average
pooling the 7× 7× 2048 feature map to get a 2048-dimensional vector.
Incorporating KPE encoding: We add the intrinsics-aware positional encoding
(KPE [21]) to the 7×7×2048 feature map. KPE comprises sinusoidal encoding of
the angles θx and θy (Sec. 4.1 in the main paper), resulting in 5∗4∗K dimensional
sparse encoding (4 for corners and 1 for center pixel) and H×W×4∗K resolution
dense encoding, where K is the number of frequency components (set to 4). For
the sparse KPE variant, we broadcast it to 7× 7 resolution whereas for the dense
KPE variant, we interpolate it to 7× 7 resolution and concatenate to the feature
map. This concatenated feature is passed to a 3 convolutional layers (with 1024,
512, 256 channels respectively, each with kernel size of 3× 3 and ReLU [18] non-
linearity) to get a 3× 3× 256 feature map. This is flattened to 2304-dimensional
vector and passed through a 1-layer MLP to get a 2048-dimensional feature
vector. We do not use batchnorm [13] here since we want to preserve the spatial
information in the KPE encoding whereas normalization would deteriorate it.
Decoder: It consists of an iterative architecture, similar to decoder in HMR [14].
The inputs are the 2048-dimensional feature vector and initial MANO [23] (shape
β, articulation θlocal and global pose θglobal, all initialized as 0-vectors) & weak
perspective camera parameters (initialized from the 2048-dimensional feature
vector). Each of these parameters are predicted using a separate decoder head.
The rotation parameters θlocal, θglobal are predicted in matrix form and converted
to axis-angle representation to feed to MANO model. Each decoder is a 3-layer
MLP with the 2 intermediate layers having 1024 channels and the output layer
having the same number of channels as the predicted parameter. The output of
each decoder is added to the initial parameters to get the updated parameters.
This process is repeated for 3 iterations. The output of the last iteration is used
for the final prediction.

For the auxiliary supervision used to train our model, we also predict hand
segmentation masks and grasp labels. The hand parameters β, θlocal, and θglobal
are passed to a differentiable MANO layer [10, 23] to get the hand vertices.
These vertices are used to differentiably render a soft segmentation mask using
SoftRasterizer [17,22]. The grasp classifier head on θlocal, θglobal & β (predicted
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by WildHands) as input and is implemented as a 4-layer MLP (with 1024, 1024,
512, 128 channels and ReLU non-linearity after each). This MLP predicts logits
for the 8 different grasp classes defined in [2].
Bounding box predictor: Since our model takes hand crops as input, we
need to predict the bounding box of the hand in the image. On ARCTIC, we
train a bounding box predictor on the ARCTIC training set by finetuning a
MaskRCNN [11] model. For Epic-HandKps, we use the recently released hand
detector from [1]. During training, we use the ground truth bounding box for
the hand crop (with small perturbation), estimated using the 2D keypoints and
scaled by a fixed value of 1.5 to provide additional context around the hand. All
the ablations use ground truth bounding box for the hand crop.

B.2 Training

We use different sources of supervision to train our model, depending on the
dataset. We train WildHands jointly on multiple datasets: (1) Arctic [7]: using 3D
supervision on β, θlocal, θglobal, 3D hand keypoints, 2D projections of 3D keypoints
in the image and translation of root joint w.r.t. camera, (2) AssemblyHands [19]:
using supervision on 3D hand keypoints and 2D projections of 3D keypoints in
the image (it does not represent hands using MANO), (3) Epic-Kitchens [3]: using
segmentation masks and grasp labels, and (4) Ego4D [8]: using segmentation
masks and grasp labels. Following [7], we use L2 loss for β, θlocal, θglobal, 3D
keypoints and 2D keypoints. L1 loss is used for segmentation masks and cross-
entropy for grasp lables. The loss weights used for each terms are: 5.0 for 2D
keypoints, 5.0 for 3D keypoints, 10.0 for θglobal, 10.0 for θlocal, 0.001 for β, 1.0
for translation, 10.0 for segmentation and 0.1 for grasp loss.

We use the training sets of ARCTIC (187K images), AssemblyHands (360K),
VISOR split (30K) of Epic-Kitchens & 45K images from Ego4D to train different
models used in the experiments. The validation is done on a separate set of 2D
keypoints annotations collected on 250 hand crops from Epic-Kitchens train set.
All models are trained for 100 epochs with a learning rate of 1e-5. We also adopt
early stopping to terminate the training if the validation loss does not improve
for 5 checkpoints. The checkpoints are saved every 5 epochs for models trained
without AssemblyHands & every 1 epoch for models trained with AssemblyHands.
For multi-gpu training, we use DDP strategy in pytorch lightning.

C Additional Analysis

In the main paper, we report results in the zero-shot generalization setting
on AssemblyHands, H2O, Ego-Exo4D and Epic-HandKps. Here, we provide
further details on Ego-Exo4D evaluation, HaMeR [21] experiments with models
training in different settings and non-zero-shot results of WildHands on ARCTIC,
AssemblyHands and Epic-HandKps. We use the same metrics as the experiments
in the main paper.
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EgoExo4D evaluation: We use 3D hands annotations from the validation
split of Ego-Exo4D dataset. These 3D annotations are computed by running 3D
triangulation with the 2D hand keypoints annotations in different views. These
views are obtained from 1 egocentric camera and 4 exocentric cameras in the
scene. Since these exocentric cameras are often far from the user, the hands appear
quite small in the image due to which the 2D keypoints are often inaccurate.
This leads to very noisy 3D annotations even though RANSAC is used to reduce
the effect of outliers and post-processing is done to filter annotations. We do not
report MRRPE for Ego-Exo4D results due to large noise in wrist annotations.
Note that the egocentric image in Ego-Exo4D contains large amounts of radial
distortion due to the use of fisheye lens, so we remove the distortions in raw
sensor data using the official code1, before providing as input to the model.

C.1 HaMeR Experiments

Comparisons with HaMeR [20]: In Tab.6 of the main paper, we compare to
the recently released HaMeR model. HaMeR is trained in 2 different settings: (a)
with 7 lab + 3 wild datasets (5%), (b) also adding the recent HInt [20] dataset
containing in-the-wild images from New Days subset of Hands23 [2], VISOR [4]
and Ego4D [9] with 2D keypoint annotations. Here, we report results of HaMeR
trained in both settings in Tab. A. WildHands outperforms FrankMocap across all
metrics and beats HaMeR on 3 of 6 metrics. We expect scaling up the backbone
and datasets used to train WildHands can lead to even stronger performance.

Table A: Systems comparison. We compare with publicly released models: FrankMo-
cap [24] and concurrent work HaMeR [20]. FrankMocap uses a ResNet-50 backbone
and was trained on 6 lab datasets. HaMeR uses a ViT-H [6] backbone and was trained
on 12 lab+in-the-wild datasets across nearly 3M images.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

FrankMocap [24] (ResNet-50, 6 lab) 58.51 - 97.59 - 175.91 13.33
HaMeR [20] (ViT-H, 7 lab + 3 wild) 25.99 148.51 44.49 335.63 110.96 4.47
HaMeR [20] (ViT-H, 7 lab + 3 wild + HInt) 23.82 147.87 45.49 334.52 116.46 4.56
WildHands (ResNet-50, 2 lab + 1 wild) 31.08 49.49 80.40 148.12 55.84 7.20

Epic-HandKps results for HaMeR: We also report HaMeR results on Epic-
HandKps for both variants, trained with and without HInt, in Tab. A. We
compute the L2 metric by transforming the 3D hand mesh prediction from crop
frame to the camera coordinate frame and projecting in the full image using
ground truth intrinsics. We observe that training HaMeR with HInt leads to
slight improvement in most settings. Our WildHands models outperforms HaMeR
on in-the-wild settings, i.e., Ego-Exo4D and Epic-HandKps.
1 https://github.com/EGO4D/ego- exo4d- egopose/tree/main/handpose/data_

preparation

https://github.com/EGO4D/ego-exo4d-egopose/tree/main/handpose/data_preparation
https://github.com/EGO4D/ego-exo4d-egopose/tree/main/handpose/data_preparation
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Note that another way of evaluating 2D pose for HaMeR is to use the 2D
hand predictions in the crop frame and rescale & shift them to the full image.
This leads to a 2D pose error of 3.24 for HaMeR and 3.52 for HaMeR trained
with HInt on Epic-HandKps. This is much better than the 2D projections of 3D
hand mesh in the full image. This is due to the made up camera used by HaMeR,
which assumes a fixed focal length of 5000 during training. Egocentric images
generally operate in a much smaller focal length resulting in large difference
between the results. WildHands uses the ground truth intrinsics as input to the
model and is able to predict much better 3D hands in egocentric images.

C.2 Additional Ablations

Here, we show results with models trained on the same datasets used for evalua-
tion. Specifically, we show improvements due to crops & KPE (Tab. B), auxiliary
supervision (Tab. C), effect of scaling up data (Tab. D) & 3D evaluation results
on AssemblyHands (Tab. E). The trends are consistent with the zero-shot experi-
ments. One notable difference is that we do not see much benefits on ARCTIC
and AssemblyHands in 3D metrics when evaluating WildHands trained on these
datasets. This is likely due to the use of strong 3D ground truth during training,
thus auxiliary supervision from out-of-domain EPIC not being very useful. We
provide further ablations on the models reported in the main paper below.
Using predicted hand bounding box: As mentioned in Sec. B.1, we finetune
a MaskRCNN model to predict bounding box on ARCTIC and use hand predictor
from [2] on Epic-HandKps. When using predicted bounding box instead, we see
a drop in performance on both ARCTIC and Epic-HandKps (Tab. F). This is
expected since the predicted bounding box is not always accurate. We see similar
trend for FrankMocap [24] as well.
Ignoring camera intrinsics: The KPE [21] encoding captures the location of
the hand crop in the camera’s field of view. However, camera intrinsics may not
always be available in the wild. So, we also explore a variant of our model which
ignores camera intrinsics and uses only the crop location w.r.t. to the image center
(Tab. F). We expect the intrinsics to matter more in multiple datasets setting
involving images captured from different cameras, so we remove intrinsics from the
model trained jointly on ARCTIC, AssemblyHands & Epic-Kitchens. While we
notice a slight dip in performance, it is significantly better than ArcticNet-SF [7]
or FrankMocap [24].
Removing global features from grasp classifier: Our model uses a classifier
to predict the grasp type from the estimated hand pose parameters. While hand
pose is indicative of grasp type, hand poses might also occur in thin air, without
actually grasping the object. So, we verify if using global image information could
be useful in this case. From the results in Tab. F, we see that removing global
image features improves L2 error on Epic-HandKps. This could be because the
pseudo ground truth is generated using the predictions of a recent model [2]
which might already be trained to distinguish between hand poses in thin air
and grasping poses. However, we see a drop in performance on ARCTIC when
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removing global features. This is likely due to the model exploiting information
from surrounding objects since all the 11 objects are scene during training.
Transformer variant: We modify the architecture of WildHands to use trans-
formers [5, 25] instead of convolutions. This increases the capacity our the model
by 4 times. We notice a significant improvement on ARCTIC (Tab. F) but not
on Epic-HandKps. In fact, the performance decreases. This could be due to large
capacity leading to overfitting on ARCTIC since varition in ARCTIC is limited.
Another could be that strong supervision is not available on in-the-wild data used
for training which could be causing the transformer to overfit to weird signals in
the data. This needs more analysis to better understand the effect of transformer
in our model.
Object loss in ArcticNet-SF: The default ArcticNet-SF [7] model predicts
both the hand pose and the object pose from a single image. Since we focus only
on hand pose, we also examine the effect of removing the object loss. We notice
that MPJPE worsens but MRRPE improves. It is hard to identify the reason
but could be due to the model overfitting to weird signals in objects since all 11
objects are seen during training. The performance on Epic-HandKps decreases,
which also indicates some extent of overfitting to ARCTIC objects.

D Epic-HandKps

Since 3D hand annotations are difficult to collect for in-the-wild images, we
instead collect 2D annotations for the 21 hand joints and use it to evaluate
the 2D projections of the predicted 3D keypoints. We refer to this dataset as
Epic-HandKps. We sample 5K images from the validation set of VISOR split of
Epic-Kitchens and get the 21 joints annotated via Scale AI. We use the same
joint convention as ARCTIC [7]. We crop the images around the hand using the
segmentation masks in VISOR and provide the crops to annotators for labeling.
Note that most of these images do not have all the 21 keypoints visible. Following
ARCTIC, we only consider images with atleast 3 visible joints for evaluation.
Moreover, since the models in our experiments required hand crops as input,
we only evaluate on those images for which hand bounding box is predicted by
the recently released hand detector model from [2]. This leaves us with 4724
hand annotations, with 2697 right hands and 2027 left hands. We show sample
annotations in Fig. C.

E Visualizations

Qualitative comparisons: We provide visualizations of the predicted hand pose
from WildHands & FrankMocap in Fig. E and WildHands & HaMeR in Fig. D.
We show projection of the predicted hand in the image and rendering of the
hand mesh from 2 more views. Our WildHands model is able to predict better
hand poses from a single image than FrankMocap [24] in challenging occlusion
scenarios involving dexterous interactions, e.g . stirring a ladle, grasping objects,
rolling dough, pick & place, sprinkling toppings. We also observe improvements
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Fig.C: Epic-HandKps annotations. We collect 2D joint annotations (shown in
blue) for 5K in-the-wild egocentric images from Epic-Kitchens [3] dataset. We show few
annotations here. We also have the label for the joint corresponding to each keypoint.
Note the large variation in dexterous poses of hands interactiong with objects.
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over HaMeR: 2D projections of the 3D hand predicted by WildHands align better
with the hand in the image and the scale of the predicted hand is more accurate.
These are consistent with quantitative improvements in Tab. A.

We provide similar visualizations on ARCTIC in Fig. G and compare with
ArcticNet-SF [7]. Our WildHands model predicts better hand poses in scenes
involving interaction with articulated objects.
Failure Cases: On Epic-HandKps (Fig. F), we observe that images in which
the fingers are barely visible, e.g . when kneading a dough in top row, are quite
challenging. Moreover, our model is sometimes unable to predict wide palm poses,
e.g . grasps in bottom row. On ARCTIC (Fig. H), we observe similar failure cases,
i.e. when fingers are barely visible (top row), wide palm poses (bottom row).
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Fig. D: Qualitative comparison with HaMeR on Epic-HandKps. Our WildHands
model is able to predict better hand poses from a single image than HaMeR [20] in
challenging occlusion scenarios involving dexterous interactions, e.g . images of hands
grasping the objects from Epic-HandKps. Our predictions are better aligned with the
hands in the image and HaMeR sometimes predicts large size hands. We show projection
of the predicted hand in the image and rendering of the hand mesh from 2 more views.
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Fig. E: Visualizations on Epic-HandKps. Our WildHands model is able to predict
better hand poses from a single image than FrankMocap [24] in challenging occlusion
scenarios involving dexterous interactions, e.g . images of hands grasping the objects
from Epic-HandKps. We show projection of the predicted hand in the image and
rendering of the hand mesh from 2 more views.
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Fig. F: Failure cases on Epic-HandKps. We observe that images in which the
fingers are barely visible, e.g . when kneading a dough in top row, are quite challenging.
Moreover, our model is sometimes unable to predict wide palm poses, e.g . grasps in
bottom row.
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Fig. G: Visualizations on ARCTIC. Our WildHands model is able to predict better
hand poses from a single image than ArcticNet-SF [7] in scenes involving interaction
with articulated objects. We show projection of the predicted hand in the image and
rendering of the hand mesh from 2 additional views.
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Fig.H: Failure cases on ARCTIC. We observe similar failure cases as Fig. F, i.e.
when fingers are barely visible (top row), wide palm poses (bottom row).
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Table B: Role of Cropping and KPE Encoding. Switching to crops from full
image input (as used in ArcticNet-SF [7]), we see a small improvement in root relative
shape metric (MPJPE) but a huge degradation in global pose metrics (MRRPE).
Adding in the KPE encoding, either sparse or dense, maintains the root relative shape
metric, but improves the global pose metric significantly, while also improving the Epic-
HandKps metrics. To maximally isolate the impact of cropping and KPE encodings,
these comparisons are done without any auxiliary supervision.

Method network KPE ARCTIC val Epic-HandKps

input encoding MPJPE ↓ MRRPE ↓ L2 error ↓

ArcticNet-SF [7] image n/a 22.60 32.71 35.07
WildHands (no aux.) crop - 21.40 58.24 34.12
WildHands (no aux.) crop dense 21.13 30.20 19.99
WildHands (no aux.) crop sparse 21.50 28.70 17.07

Table C: Role of auxiliary supervision. Both grasp and segmentation auxiliary
supervision contribute to the final performance, with segmentation providing a bigger
gain as compared to grasp labels.

Method ARCTIC val Epic-HandKps

MPJPE ↓ MRRPE ↓ L2 error ↓

WildHands 20.57 28.81 6.68
− grasp 21.64 30.52 9.27
− segmentation 20.99 29.75 13.60
− grasp − segmentation 21.50 28.70 17.07

Table D: Effect of Scaling-up Data. While additional datasets on top of the ARCTIC
data do not improve metrics on ARCTIC, adding either Assembly (3D supervision)
or EPIC (with auxiliary supervision) improves metrics on Epic-HandKps, with the
auxiliary supervision from the in domain EPIC data helping more.

Training Datasets ARCTIC val Epic-HandKps

MPJPE ↓ MRRPE ↓ L2 error ↓

ARCTIC 21.50 28.70 17.07
ARCTIC + Assembly 23.20 30.00 11.05
ARCTIC + EPIC (aux) 20.57 28.81 6.68
ARCTIC + Assembly + EPIC (aux) 21.76 29.66 6.56
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Table E: Results on AssemblyHands. Using crops and KPE encodings also improve
performance when training and testing on the AssmeblyHands dataset.

Method network KPE Assembly val

input encoding MPJPE ↓ MRRPE ↓

ArcticNet-SF image n/a 23.96 58.21
WildHands (no aux.) crop n/a 22.55 53.92
WildHands (no aux.) crop sparse 22.24 35.58
WildHands (no aux., also trained on ARCTIC) crop sparse 19.72 28.13

Table F: Ablations. We explore variants of WildHands which use predicted bounding
box instead of ground truth bounding box (GT hand box), ignoring camera intrinsics &
using only crop location w.r.t. to image center, removing global image features from the
grasp classifier (grasp-glb) and using transformer [5,25] instead of convolutional architec-
ture. We also consider ArcticNet-SF [7] trained without object loss and FrankMocap [24]
evaluation with predicted hand bounding box instead of GT hand box.

Method ARCTIC val Epic-HandKps

MPJPE ↓ MRRPE ↓ L2 error ↓

WildHands 20.57 28.81 6.68
− GT hand box 21.02 30.31 7.28
− camera intrx 20.65 31.09 7.47
− segmentation 20.99 29.76 13.60
− segmentation − grasp-glb 21.90 29.87 12.41

WildHands (no aux.) 21.50 28.70 17.07
+ Transformer 19.50 27.11 20.36

ArcticNet-SF [7] 22.60 32.71 35.07
− no object loss 23.25 31.50 33.61

FrankMocap [24] 53.99 N/A 13.33
− GT hand box 57.00 N/A 14.57
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 369.5

2D Keypoint Error: 3.8
2D Centroid Dist.: 98.0

3D Keypoint Error: 363.3

2D Keypoint Error: 3.1
2D Centroid Dist.: 110.6

3D Keypoint Error: 348.2

2D Keypoint Error: 3.9
2D Centroid Dist.: 96.0

3D Keypoint Error: 342.8

2D Keypoint Error: 3.9
2D Centroid Dist.: 95.5

3D Keypoint Error: 315.8

2D Keypoint Error: 3.5
2D Centroid Dist.: 89.3

3D Keypoint Error: 315.4

2D Keypoint Error: 3.6
2D Centroid Dist.: 90.5

3D Keypoint Error: 312.2

2D Keypoint Error: 3.9
2D Centroid Dist.: 85.5

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 36.4

2D Keypoint Error: 3.9
2D Centroid Dist.: 88.3

3D Keypoint Error: 28.8

2D Keypoint Error: 3.7
2D Centroid Dist.: 55.9

3D Keypoint Error: 27.9

2D Keypoint Error: 3.8
2D Centroid Dist.: 80.8

3D Keypoint Error: 26.0

2D Keypoint Error: 4.0
2D Centroid Dist.: 57.2

3D Keypoint Error: 24.8

2D Keypoint Error: 4.0
2D Centroid Dist.: 79.3

3D Keypoint Error: 23.3

2D Keypoint Error: 3.9
2D Centroid Dist.: 16.9

3D Keypoint Error: 20.4

2D Keypoint Error: 4.0
2D Centroid Dist.: 42.6

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 584.2

2D Keypoint Error: 3.3
2D Centroid Distance: 120.8

3D Keypoint Error: 572.2

2D Keypoint Error: 3.3
2D Centroid Distance: 147.2

3D Keypoint Error: 567.9

2D Keypoint Error: 3.9
2D Centroid Distance: 130.9

3D Keypoint Error: 561.2

2D Keypoint Error: 3.3
2D Centroid Distance: 147.2

3D Keypoint Error: 558.9

2D Keypoint Error: 3.0
2D Centroid Distance: 147.3

3D Keypoint Error: 555.9

2D Keypoint Error: 4.0
2D Centroid Distance: 130.9

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 43.6

2D Keypoint Error: 3.0
2D Centroid Distance: 100.5

3D Keypoint Error: 43.4

2D Keypoint Error: 3.9
2D Centroid Distance: 81.9

3D Keypoint Error: 43.0

2D Keypoint Error: 3.9
2D Centroid Distance: 67.1

3D Keypoint Error: 40.5

2D Keypoint Error: 4.0
2D Centroid Distance: 58.7

3D Keypoint Error: 40.2

2D Keypoint Error: 4.0
2D Centroid Distance: 117.4

3D Keypoint Error: 40.2

2D Keypoint Error: 3.9
2D Centroid Distance: 58.7

Fig. I: Qualitative visualizations for hands with high 3D shape error (absolute
in (a.1) and root-relative in (a.2)) but low 2D keypoint error (after centering).
The right hand in blue box is the reference hand w.r.t. which we measure 2D and
3D keypoint errors. (b.1 and b.2) show examples for the 3D hand shape and the
corresponding location in the field of view such that the centered 2D projection of
the hand keypoints match the reference in the blue box. Across all 4 settings, note
the diversity in 3D hand shape and pose but the similarity in centered 2D hand pose.
Scatter plots on the left are same as those in Fig. 3 in the main paper. Fig. J and Fig. K
provide 2 more examples.
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 281.4

2D Keypoint Error: 3.9
2D Centroid Dist.: 61.8

3D Keypoint Error: 262.5

2D Keypoint Error: 4.0
2D Centroid Dist.: 61.4

3D Keypoint Error: 247.0

2D Keypoint Error: 3.8
2D Centroid Dist.: 71.0

3D Keypoint Error: 237.3

2D Keypoint Error: 3.9
2D Centroid Dist.: 66.0

3D Keypoint Error: 229.9

2D Keypoint Error: 3.6
2D Centroid Dist.: 61.7

3D Keypoint Error: 229.6

2D Keypoint Error: 3.4
2D Centroid Dist.: 73.6

3D Keypoint Error: 228.1

2D Keypoint Error: 2.3
2D Centroid Dist.: 59.4

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 22.3

2D Keypoint Error: 3.6
2D Centroid Dist.: 54.9

3D Keypoint Error: 22.1

2D Keypoint Error: 3.9
2D Centroid Dist.: 23.1

3D Keypoint Error: 21.7

2D Keypoint Error: 3.9
2D Centroid Dist.: 49.6

3D Keypoint Error: 20.2

2D Keypoint Error: 3.5
2D Centroid Dist.: 48.4

3D Keypoint Error: 18.9

2D Keypoint Error: 3.6
2D Centroid Dist.: 58.8

3D Keypoint Error: 18.8

2D Keypoint Error: 3.4
2D Centroid Dist.: 64.7

3D Keypoint Error: 18.6

2D Keypoint Error: 3.9
2D Centroid Dist.: 18.2

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 580.1

2D Keypoint Error: 4.0
2D Centroid Distance: 137.0

3D Keypoint Error: 562.8

2D Keypoint Error: 4.0
2D Centroid Distance: 137.0

3D Keypoint Error: 555.7

2D Keypoint Error: 4.0
2D Centroid Distance: 137.0

3D Keypoint Error: 554.6

2D Keypoint Error: 3.5
2D Centroid Distance: 137.0

3D Keypoint Error: 548.4

2D Keypoint Error: 3.9
2D Centroid Distance: 137.0

3D Keypoint Error: 533.5

2D Keypoint Error: 3.7
2D Centroid Distance: 137.1

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 27.5

2D Keypoint Error: 3.7
2D Centroid Distance: 52.5

3D Keypoint Error: 25.9

2D Keypoint Error: 4.0
2D Centroid Distance: 66.3

3D Keypoint Error: 24.5

2D Keypoint Error: 3.7
2D Centroid Distance: 52.4

3D Keypoint Error: 23.9

2D Keypoint Error: 4.0
2D Centroid Distance: 52.3

3D Keypoint Error: 23.6

2D Keypoint Error: 3.9
2D Centroid Distance: 60.2

3D Keypoint Error: 23.4

2D Keypoint Error: 4.0
2D Centroid Distance: 103.5

Fig. J: Another example similar to Fig. I. Qualitative visualizations for hands
with high 3D shape error (absolute in (a.1) and root-relative in (a.2)) but
low 2D keypoint error (after centering). The right hand in blue box is the reference
hand w.r.t. which we measure 2D and 3D keypoint errors. (b.1 and b.2) show examples
for the 3D hand shape and the corresponding location in the field of view such that
the centered 2D projection of the hand keypoints match the reference in the blue box.
Across all 4 settings, note the diversity in 3D hand shape and pose but the similarity in
centered 2D hand pose.
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 224.8

2D Keypoint Error: 3.2
2D Centroid Dist.: 76.1

3D Keypoint Error: 197.5

2D Keypoint Error: 4.0
2D Centroid Dist.: 39.7

3D Keypoint Error: 172.8

2D Keypoint Error: 4.0
2D Centroid Dist.: 43.0

3D Keypoint Error: 167.6

2D Keypoint Error: 4.0
2D Centroid Dist.: 45.0

3D Keypoint Error: 163.7

2D Keypoint Error: 3.5
2D Centroid Dist.: 47.8

3D Keypoint Error: 149.8

2D Keypoint Error: 3.2
2D Centroid Dist.: 50.1

3D Keypoint Error: 137.5

2D Keypoint Error: 4.0
2D Centroid Dist.: 7.2

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 26.5

2D Keypoint Error: 3.9
2D Centroid Dist.: 31.0

3D Keypoint Error: 24.2

2D Keypoint Error: 3.7
2D Centroid Dist.: 28.4

3D Keypoint Error: 22.3

2D Keypoint Error: 4.0
2D Centroid Dist.: 7.7

3D Keypoint Error: 22.3

2D Keypoint Error: 3.5
2D Centroid Dist.: 47.0

3D Keypoint Error: 22.2

2D Keypoint Error: 3.3
2D Centroid Dist.: 41.7

3D Keypoint Error: 20.8

2D Keypoint Error: 3.9
2D Centroid Dist.: 32.4

3D Keypoint Error: 20.1

2D Keypoint Error: 3.0
2D Centroid Dist.: 8.8

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 522.2

2D Keypoint Error: 3.9
2D Centroid Distance: 130.8

3D Keypoint Error: 516.6

2D Keypoint Error: 4.0
2D Centroid Distance: 130.8

3D Keypoint Error: 515.8

2D Keypoint Error: 3.6
2D Centroid Distance: 134.1

3D Keypoint Error: 510.4

2D Keypoint Error: 3.6
2D Centroid Distance: 130.8

3D Keypoint Error: 499.9

2D Keypoint Error: 3.6
2D Centroid Distance: 134.1

3D Keypoint Error: 478.6

2D Keypoint Error: 3.9
2D Centroid Distance: 128.7

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 34.6

2D Keypoint Error: 3.8
2D Centroid Distance: 56.4

3D Keypoint Error: 34.5

2D Keypoint Error: 3.7
2D Centroid Distance: 81.1

3D Keypoint Error: 32.9

2D Keypoint Error: 4.0
2D Centroid Distance: 80.0

3D Keypoint Error: 29.4

2D Keypoint Error: 3.9
2D Centroid Distance: 36.6

3D Keypoint Error: 29.2

2D Keypoint Error: 3.8
2D Centroid Distance: 56.2

3D Keypoint Error: 29.0

2D Keypoint Error: 3.9
2D Centroid Distance: 36.6

Fig.K: Another example similar to Fig. I. Qualitative visualizations for hands
with high 3D shape error (absolute in (a.1) and root-relative in (a.2)) but
low 2D keypoint error (after centering). The right hand in blue box is the reference
hand w.r.t. which we measure 2D and 3D keypoint errors. (b.1 and b.2) show examples
for the 3D hand shape and the corresponding location in the field of view such that
the centered 2D projection of the hand keypoints match the reference in the blue box.
Across all 4 settings, note the diversity in 3D hand shape and pose but the similarity in
centered 2D hand pose.
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