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In this document, we first provide additional implementation details about the architecture (Sec. 1.1) & training protocol
(Sec. 1.2). We then present additional ablations (Sec. 2) & describe our EPIC-HandKps dataset (Sec. 3). Next, we provide
qualitative comparisons (Sec. 4) of our WildHands model with FrankMocap [19] on EPIC-HandKps (Fig. 2) & with Arctic-
Net [6] on ARCTIC (Fig. 4). We also show failure cases of WildHands on both EPIC-HandKps (Fig. 3) & ARCTIC (Fig. 5)
and more visualizations of perspective distortion induced ambiguity in hands (Fig. 6). Moreover, the video contains 3D hand
mesh visualizations and a summary of our key contributions.

1. Implementation Details
1.1. Architecture

We build on top of the ArcticNet-SF [6] and FrankMocap [19] models. Here, we provide additional details about the encoder,
intrinsics-aware positional encoding (KPE [16]), decoder, bounding box predictor used in the architecture.

Encoder: Our models uses hand crops as input (resized to 224 × 224 resolution), which are processed by a ResNet50 [8]
backbone to get 7 × 7 × 2048 feature maps. The left and right hand crops as processed separately but the parameters are
shared. We also use global image features in our model, computed by average pooling the 7× 7× 2048 feature map to get a
2048-dimensional vector.

Incorporating KPE encoding: We add the intrinsics-aware positional encoding (KPE [16]) to the 7× 7× 2048 feature map.
KPE comprises sinusoidal encoding of the angles θx and θy (Sec. 4.1 in the main paper), resulting in 5 ∗ 4 ∗K dimensional
sparse encoding (4 for corners and 1 for center pixel) and H ×W × 4 ∗K resolution dense encoding, where K is the number
of frequency components (set to 4). For the sparse KPE variant, we broadcast it to 7× 7 resolution whereas for the dense KPE
variant, we interpolate it to 7× 7 resolution and concatenate to the feature map. This concatenated feature is passed to a 3
convolutional layers (with 1024, 512, 256 channels respectively, each with kernel size of 3× 3 and ReLU [1, 14] non-linearity)
to get a 3× 3× 256 feature map. This is flattened to 2304-dimensional vector and passed through a 1-layer MLP to get a
2048-dimensional feature vector. We do not use batchnorm [10] here since we want to preserve the spatial information in the
KPE encoding whereas normalization would deteriorate it.

Decoder: It consists of an iterative architecture, similar to decoder in HMR [11]. The inputs are the 2048-dimensional
feature vector and initial MANO [18] (shape β, articulation θlocal and global pose θglobal, all initialized as 0-vectors) & weak
perspective camera parameters (initialized from the 2048-dimensional feature vector). Each of these parameters are predicted
using a separate decoder head. The rotation parameters θlocal, θglobal are predicted in matrix form and converted to axis-angle
representation to feed to MANO model. Each decoder is a 3-layer MLP with the 2 intermediate layers having 1024 channels
and the output layer having the same number of channels as the predicted parameter. The output of each decoder is added to
the initial parameters to get the updated parameters. This process is repeated for 3 iterations. The output of the last iteration is
used for the final prediction.

For the auxiliary supervision used to train our model, we also predict hand segmentation masks and grasp labels. The hand
parameters β, θlocal, and θglobal are passed to a differentiable MANO layer [7, 18] to get the hand vertices. These vertices are
used to differentiably render a soft segmentation mask using SoftRasterizer [13, 17]. The grasp classifier head on θlocal, θglobal
& β (predicted by WildHands) as input and is implemented as a 4-layer MLP (with 1024, 1024, 512, 128 channels and ReLU
non-linearity after each). This MLP predicts logits for the 8 different grasp classes defined in [3].
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Bounding box predictor: Since our model takes hand crops as input, we need to predict the bounding box of the hand in the
image. On ARCTIC, we train a bounding box predictor on the ARCTIC training set by finetuning a MaskRCNN [9] model.
For EPIC-HandKps, we use the recently released hand detector from [2]. During training, we use the ground truth bounding
box for the hand crop (with small perturbation), estimated using the 2D keypoints and scaled by a fixed value of 1.5 to provide
additional context around the hand. All the ablations use ground truth bounding box for the hand crop.

1.2. Training

We use different sources of supervision to train our model, depending on the dataset. We train WildHands jointly on multiple
datasets: (1) Arctic [6]: using 3D supervision on β, θlocal, θglobal, 3D hand keypoints, 2D projections of 3D keypoints in the
image and translation of root joint w.r.t. camera, (2) AssemblyHands [15]: using supervision on 3D hand keypoints and
2D projections of 3D keypoints in the image (it does not represent hands using MANO), and (3) EPIC-Kitchens [4]: using
segmentation masks and grasp labels. Following [6], we use L2 loss for β, θlocal, θglobal, 3D keypoints and 2D keypoints. L1
loss is used for segmentation masks and cross-entropy for grasp lables. The loss weights used for each terms are: 5.0 for 2D
keypoints, 5.0 for 3D keypoints, 10.0 for θglobal, 10.0 for θlocal, 0.001 for β, 1.0 for translation, 10.0 for segmentation and 0.1
for grasp loss.

We use the training sets of ARCTIC (187K images), AssemblyHands (360K) and VISOR split (30K) of EPIC-Kitchens to
train our model. All models are trained for 100 epochs with a learning rate of 1e− 5. The multi-dataset training is done on 2
A40 GPUs with a batch size of 144 and Adam optimizer [12].

2. Ablations

Using predicted hand bounding box: As mentioned in Sec. 1.1, we finetune a MaskRCNN model to predict bounding box on
ARCTIC and use hand predictor from [3] on EPIC-HandKps. When using predicted bounding box instead, we see a drop in
performance on both ARCTIC and EPIC-HandKps (Tab. 1). This is expected since the predicted bounding box is not always
accurate. We see similar trend for FrankMocap [19] as well.

Ignoring camera intrinsics: The KPE [16] encoding captures the location of the hand crop in the camera’s field of view.
However, camera intrinsics may not always be available in the wild. So, we also explore a variant of our model which ignores
camera intrinsics and uses only the crop location w.r.t. to the image center (Tab. 1). We expect the intrinsics to matter more in
multiple datasets setting involving images captured from different cameras, so we remove intrinsics from the model trained
jointly on ARCTIC, AssemblyHands & EPIC-Kitchens. While we notice a slight dip in performance, it is significantly better
than ArcticNet-SF [6] or FrankMocap [19].

Removing global features from grasp classifier: Our model uses a classifier to predict the grasp type from the estimated
hand pose parameters. While hand pose is indicative of grasp type, hand poses might also occur in thin air, without actually
grasping the object. So, we verify if using global image information could be useful in this case. From the results in Tab. 1, we
see that removing global image features improves L2 error on EPIC-HandKps. This could be because the pseudo ground truth
is generated using the predictions of a recent model [3] which might already be trained to distinguish between hand poses in
thin air and grasping poses. However, we see a drop in performance on ARCTIC when removing global features. This is likely
due to the model exploiting information from surrounding objects since all the 11 objects are scene during training.

Transformer variant: We modify the architecture of WildHands to use transformers [5, 20] instead of convolutions. This
increases the capacity our the model by 4 times. We notice a significant improvement on ARCTIC (Tab. 1) but not on
EPIC-HandKps. In fact, the performance decreases. This could be due to large capacity leading to overfitting on ARCTIC
since varition in ARCTIC is limited. Another could be that strong supervision is not available on in-the-wild data used for
training which could be causing the transformer to overfit to weird signals in the data. This needs more analysis to better
understand the effect of transformer in our model.

Object loss in ArcticNet-SF: The default ArcticNet-SF [6] model predicts both the hand pose and the object pose from a
single image. Since we focus only on hand pose, we also examine the effect of removing the object loss. We notice that
MPJPE worsens but MRRPE improves. It is hard to identify the reason but could be due to the model overfitting to weird
signals in objects since all 11 objects are seen during training. The performance on EPIC-HandKps decreases, which also
indicates some extent of overfitting to ARCTIC objects.
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Method ARCTIC val EPIC-HandKps

MPJPE ↓ MRRPE ↓ L2 error ↓
WildHands 20.57 28.81 6.68

− GT hand box 21.02 30.31 7.28
− camera intrx 20.65 31.09 7.47
− segmentation 20.99 29.76 13.60
− segmentation − grasp-glb 21.90 29.87 12.41

WildHands (no aux.) 21.50 28.70 17.07
+ Transformer 19.50 27.11 20.36

ArcticNet-SF [6] 22.60 32.71 35.07
− no object loss 23.25 31.50 33.61

FrankMocap [19] 53.99 N/A 13.33
− GT hand box 57.00 N/A 14.57

Table 1. Ablations. We explore variants of WildHands which use predicted bounding box instead of ground truth bounding box (GT hand
box), ignoring camera intrinsics & using only crop location w.r.t. to image center, removing global image features from the grasp classifier
(grasp-glb) and using transformer [5, 20] instead of convolutional architecture. We also consider ArcticNet-SF [6] trained without object
loss and FrankMocap [19] evaluation with predicted hand bounding box instead of GT hand box.

3. EPIC-HandKps
Since 3D hand annotations are difficult to collect for in-the-wild images, we instead collect 2D annotations for the 21 hand
joints and use it to evaluate the 2D projections of the predicted 3D keypoints. We refer to this dataset as EPIC-HandKps.
We sample 5K images from the validation set of VISOR split of EPIC-Kitchens and get the 21 joints annotated via Scale
AI. We use the same joint convention as ARCTIC [6]. We crop the images around the hand using the segmentation masks
in VISOR and provide the crops to annotators for labeling. Note that most of these images do not have all the 21 keypoints
visible. Following ARCTIC, we only consider images with atleast 3 visible joints for evaluation. Moreover, since the models
in our experiments required hand crops as input, we only evaluate on those images for which hand bounding box is predicted
by the recently released hand detector model from [3]. This leaves us with 4724 hand annotations, with 2697 right hands and
2027 left hands. We show sample annotations in Fig. 1.

4. Visualizations

Qualitative comparisons: We provide visualizations of the predicted hand pose from WildHands and FrankMocap in Fig. 2.
We show projection of the predicted hand in the image and rendering of the hand mesh from 2 more views. Our WildHands
model is able to predict better hand poses from a single image than FrankMocap [19] in challenging occlusion scenarios
involving dexterous interactions, e.g. stirring a ladle, grasping objects, rolling dough, pick & place, sprinkling toppings.

We provide similar visualizations on ARCTIC in Fig. 4 and compare with ArcticNet-SF [6]. Our WildHands model predicts
better hand poses in scenes involving interaction with articulated objects.

Failure Cases: On EPIC-HandKps (Fig. 3), we observe that images in which the fingers are barely visible, e.g. when kneading
a dough in top row, are quite challenging. Moreover, our model is sometimes unable to predict wide palm poses, e.g. grasps in
bottom row. On ARCTIC (Fig. 5), we observe similar failure cases, i.e. when fingers are barely visible (top row), wide palm
poses (bottom row).

5. Perspective Distortion Induced Ambiguity in Hands (Qualitative Visualizations)
Figure 6 reproduces Figures 3 and 4 from the main paper, but Figure 6 (b.1 and b.2) additionally provide qualitative visual-
izations for hands that are dissimilar in 3D shape and pose but similar in centered 2D hand keypoints, as found via a PnP
alignment of 3D hands from the ARCTIC dataset to the reference 2D keypoints with appropriate shifts. Figure 7 and Figure 8
provide another 2 examples.
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Figure 1. EPIC-HandKps annotations. We collect 2D joint annotations (shown in blue) for 5K in-the-wild egocentric images from
EPIC-Kitchens [4] dataset. We show few annotations here. We also have the label for the joint corresponding to each keypoint. Note the
large variation in dexterous poses of hands interactiong with objects.

4



Fr
an
kM
oc
ap

W
ild
H
an
ds

W
ild
H
an
ds

Fr
an
kM
oc
ap

Fr
an
kM
oc
ap

W
ild
H
an
ds

W
ild
H
an
ds

Fr
an
kM
oc
ap

Fr
an
kM
oc
ap

W
ild
H
an
ds

W
ild
H
an
ds

Fr
an
kM
oc
ap

Fr
an
kM
oc
ap

W
ild
H
an
ds

W
ild
H
an
ds

Fr
an
kM
oc
ap

Figure 2. Visualizations on EPIC-HandKps. Our WildHands model is able to predict better hand poses from a single image than
FrankMocap [19] in challenging occlusion scenarios involving dexterous interactions, e.g. images of hands grasping the objects from
EPIC-HandKps. We show projection of the predicted hand in the image and rendering of the hand mesh from 2 more views.
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Figure 3. Failure cases on EPIC-HandKps. We observe that images in which the fingers are barely visible, e.g. when kneading a dough in
top row, are quite challenging. Moreover, our model is sometimes unable to predict wide palm poses, e.g. grasps in bottom row.
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Figure 4. Visualizations on ARCTIC. Our WildHands model is able to predict better hand poses from a single image than ArcticNet-SF [6]
in scenes involving interaction with articulated objects. We show projection of the predicted hand in the image and rendering of the hand
mesh from 2 additional views.
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Figure 5. Failure cases on ARCTIC. We observe similar failure cases as Fig. 3, i.e. when fingers are barely visible (top row), wide palm
poses (bottom row).
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 95.9

2D Keypoint Error: 4.0
2D Centroid Dist.: 49.3

3D Keypoint Error: 72.7

2D Keypoint Error: 3.9
2D Centroid Dist.: 71.2

3D Keypoint Error: 69.0

2D Keypoint Error: 3.9
2D Centroid Dist.: 58.6

3D Keypoint Error: 67.8

2D Keypoint Error: 3.8
2D Centroid Dist.: 63.3

3D Keypoint Error: 66.3

2D Keypoint Error: 4.0
2D Centroid Dist.: 57.2

3D Keypoint Error: 55.3

2D Keypoint Error: 3.7
2D Centroid Dist.: 57.4

3D Keypoint Error: 45.7

2D Keypoint Error: 4.0
2D Centroid Dist.: 80.7

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 36.4

2D Keypoint Error: 3.9
2D Centroid Dist.: 88.3

3D Keypoint Error: 28.8

2D Keypoint Error: 3.7
2D Centroid Dist.: 55.9

3D Keypoint Error: 27.9

2D Keypoint Error: 3.8
2D Centroid Dist.: 80.8

3D Keypoint Error: 26.0

2D Keypoint Error: 4.0
2D Centroid Dist.: 57.2

3D Keypoint Error: 24.8

2D Keypoint Error: 4.0
2D Centroid Dist.: 79.3

3D Keypoint Error: 23.3

2D Keypoint Error: 3.9
2D Centroid Dist.: 16.9

3D Keypoint Error: 20.4

2D Keypoint Error: 4.0
2D Centroid Dist.: 42.6

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 137.1

2D Keypoint Error: 3.1
2D Centroid Distance: 34.5

3D Keypoint Error: 134.7

2D Keypoint Error: 3.0
2D Centroid Distance: 49.7

3D Keypoint Error: 132.1

2D Keypoint Error: 2.9
2D Centroid Distance: 40.9

3D Keypoint Error: 129.6

2D Keypoint Error: 2.4
2D Centroid Distance: 102.7

3D Keypoint Error: 115.2

2D Keypoint Error: 2.5
2D Centroid Distance: 62.3

3D Keypoint Error: 108.4

2D Keypoint Error: 3.4
2D Centroid Distance: 34.5

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 43.6

2D Keypoint Error: 3.0
2D Centroid Distance: 100.5

3D Keypoint Error: 43.4

2D Keypoint Error: 3.9
2D Centroid Distance: 81.9

3D Keypoint Error: 43.0

2D Keypoint Error: 3.9
2D Centroid Distance: 67.1

3D Keypoint Error: 40.5

2D Keypoint Error: 4.0
2D Centroid Distance: 58.7

3D Keypoint Error: 40.2

2D Keypoint Error: 4.0
2D Centroid Distance: 117.4

3D Keypoint Error: 40.2

2D Keypoint Error: 3.9
2D Centroid Distance: 58.7

Figure 6. Qualitative visualizations for hands with high 3D shape error (absolute in (a.1) and root-relative in (a.2)) but low 2D
keypoint error (after centering). The right hand in blue box is the reference hand w.r.t. which we measure 2D and 3D keypoint errors. (b.1
and b.2) show examples for the 3D hand shape and the corresponding location in the field of view such that the centered 2D projection of
the hand keypoints match the reference in the blue box. Across all 4 settings, note the diversity in 3D hand shape and pose but the similarity
in centered 2D hand pose. Scatter plots on the left are same as those in Fig. 3 in the main paper. Fig. 7 and Fig. 8 provide 2 more examples.
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 46.8

2D Keypoint Error: 4.0
2D Centroid Dist.: 61.4

3D Keypoint Error: 46.3

2D Keypoint Error: 3.6
2D Centroid Dist.: 61.7

3D Keypoint Error: 45.9

2D Keypoint Error: 3.9
2D Centroid Dist.: 66.0

3D Keypoint Error: 43.7

2D Keypoint Error: 4.0
2D Centroid Dist.: 31.0

3D Keypoint Error: 43.6

2D Keypoint Error: 3.9
2D Centroid Dist.: 64.9

3D Keypoint Error: 42.8

2D Keypoint Error: 3.9
2D Centroid Dist.: 61.8

3D Keypoint Error: 42.1

2D Keypoint Error: 2.3
2D Centroid Dist.: 59.0

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 22.3

2D Keypoint Error: 3.6
2D Centroid Dist.: 54.9

3D Keypoint Error: 22.1

2D Keypoint Error: 3.9
2D Centroid Dist.: 23.1

3D Keypoint Error: 21.7

2D Keypoint Error: 3.9
2D Centroid Dist.: 49.6

3D Keypoint Error: 20.2

2D Keypoint Error: 3.5
2D Centroid Dist.: 48.4

3D Keypoint Error: 18.9

2D Keypoint Error: 3.6
2D Centroid Dist.: 58.8

3D Keypoint Error: 18.8

2D Keypoint Error: 3.4
2D Centroid Dist.: 64.7

3D Keypoint Error: 18.6

2D Keypoint Error: 3.9
2D Centroid Dist.: 18.2

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 79.9

2D Keypoint Error: 3.7
2D Centroid Distance: 112.0

3D Keypoint Error: 79.5

2D Keypoint Error: 3.7
2D Centroid Distance: 137.1

3D Keypoint Error: 72.4

2D Keypoint Error: 3.9
2D Centroid Distance: 88.1

3D Keypoint Error: 71.6

2D Keypoint Error: 3.9
2D Centroid Distance: 88.0

3D Keypoint Error: 71.2

2D Keypoint Error: 3.9
2D Centroid Distance: 137.0

3D Keypoint Error: 70.8

2D Keypoint Error: 3.8
2D Centroid Distance: 112.2

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 27.5

2D Keypoint Error: 3.7
2D Centroid Distance: 52.5

3D Keypoint Error: 25.9

2D Keypoint Error: 4.0
2D Centroid Distance: 66.3

3D Keypoint Error: 24.5

2D Keypoint Error: 3.7
2D Centroid Distance: 52.4

3D Keypoint Error: 23.9

2D Keypoint Error: 4.0
2D Centroid Distance: 52.3

3D Keypoint Error: 23.6

2D Keypoint Error: 3.9
2D Centroid Distance: 60.2

3D Keypoint Error: 23.4

2D Keypoint Error: 4.0
2D Centroid Distance: 103.5

Figure 7. Another example similar to Fig. 6. Qualitative visualizations for hands with high 3D shape error (absolute in (a.1) and
root-relative in (a.2)) but low 2D keypoint error (after centering). The right hand in blue box is the reference hand w.r.t. which we
measure 2D and 3D keypoint errors. (b.1 and b.2) show examples for the 3D hand shape and the corresponding location in the field of view
such that the centered 2D projection of the hand keypoints match the reference in the blue box. Across all 4 settings, note the diversity in 3D
hand shape and pose but the similarity in centered 2D hand pose.
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a.1) 3D Hands as they occur in ARCTIC (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 55.5

2D Keypoint Error: 3.5
2D Centroid Dist.: 47.8

3D Keypoint Error: 46.1

2D Keypoint Error: 3.9
2D Centroid Dist.: 36.1

3D Keypoint Error: 42.7

2D Keypoint Error: 4.0
2D Centroid Dist.: 7.2

3D Keypoint Error: 41.7

2D Keypoint Error: 3.7
2D Centroid Dist.: 28.4

3D Keypoint Error: 40.8

2D Keypoint Error: 3.8
2D Centroid Dist.: 18.2

3D Keypoint Error: 36.6

2D Keypoint Error: 4.0
2D Centroid Dist.: 45.0

3D Keypoint Error: 34.9

2D Keypoint Error: 4.0
2D Centroid Dist.: 43.0

a.2) 3D Hands as they occur in ARCTIC (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Dist.: 0.0

3D Keypoint Error: 26.5

2D Keypoint Error: 3.9
2D Centroid Dist.: 31.0

3D Keypoint Error: 24.2

2D Keypoint Error: 3.7
2D Centroid Dist.: 28.4

3D Keypoint Error: 22.3

2D Keypoint Error: 4.0
2D Centroid Dist.: 7.7

3D Keypoint Error: 22.3

2D Keypoint Error: 3.5
2D Centroid Dist.: 47.0

3D Keypoint Error: 22.2

2D Keypoint Error: 3.3
2D Centroid Dist.: 41.7

3D Keypoint Error: 20.8

2D Keypoint Error: 3.9
2D Centroid Dist.: 32.4

3D Keypoint Error: 20.1

2D Keypoint Error: 3.0
2D Centroid Dist.: 8.8

b.1) 3D Hands from ARCTIC after alignment to crop (absolute 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 88.6

2D Keypoint Error: 3.7
2D Centroid Distance: 47.7

3D Keypoint Error: 86.9

2D Keypoint Error: 3.7
2D Centroid Distance: 80.1

3D Keypoint Error: 82.8

2D Keypoint Error: 3.4
2D Centroid Distance: 79.9

3D Keypoint Error: 78.1

2D Keypoint Error: 3.4
2D Centroid Distance: 80.8

3D Keypoint Error: 77.3

2D Keypoint Error: 3.3
2D Centroid Distance: 65.8

3D Keypoint Error: 76.1

2D Keypoint Error: 3.6
2D Centroid Distance: 47.9

b.2) 3D Hands from ARCTIC after alignment to crop (root relative 3D pose error)
True 3D for image.

2D Keypoint Error: 0.0
2D Centroid Distance: 0.0

3D Keypoint Error: 34.6

2D Keypoint Error: 3.8
2D Centroid Distance: 56.4

3D Keypoint Error: 34.5

2D Keypoint Error: 3.7
2D Centroid Distance: 81.1

3D Keypoint Error: 32.9

2D Keypoint Error: 4.0
2D Centroid Distance: 80.0

3D Keypoint Error: 29.4

2D Keypoint Error: 3.9
2D Centroid Distance: 36.6

3D Keypoint Error: 29.2

2D Keypoint Error: 3.8
2D Centroid Distance: 56.2

3D Keypoint Error: 29.0

2D Keypoint Error: 3.9
2D Centroid Distance: 36.6

Figure 8. Another example similar to Fig. 6.Qualitative visualizations for hands with high 3D shape error (absolute in (a.1) and
root-relative in (a.2)) but low 2D keypoint error (after centering). The right hand in blue box is the reference hand w.r.t. which we
measure 2D and 3D keypoint errors. (b.1 and b.2) show examples for the 3D hand shape and the corresponding location in the field of view
such that the centered 2D projection of the hand keypoints match the reference in the blue box. Across all 4 settings, note the diversity in 3D
hand shape and pose but the similarity in centered 2D hand pose.
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