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Abstract. 3D hand pose estimation in everyday egocentric images is
challenging for several reasons: poor visual signal (occlusion from the
object of interaction, low resolution & motion blur), large perspective
distortion (hands are close to the camera), and lack of 3D annotations
outside of controlled settings. While existing methods often use hand
crops as input to focus on fine-grained visual information to deal with
poor visual signal, the challenges arising from perspective distortion and
lack of 3D annotations in the wild have not been systematically studied.
We focus on this gap and explore the impact of different practices, i.e.
crops as input, incorporating camera information, auxiliary supervision,
scaling up datasets. We provide several insights that are applicable to
both convolutional and transformer models, leading to better performance.
Based on our findings, we also present WildHands, a system for 3D hand
pose estimation in everyday egocentric images. Zero-shot evaluation on
4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D)
demonstrate the effectiveness of our approach across 2D and 3D metrics,
where we beat past methods by 7.4% – 66%. In system level comparisons,
WildHands achieves the best 3D hand pose on ARCTIC egocentric split,
outperforms FrankMocap across all metrics and HaMeR on 3 out of 6
metrics while being 10× smaller and trained on 5× less data.

Keywords: 3D Hand Pose · Egocentric Vision · 3D from single image

1 Introduction

Understanding egocentric hands in 3D enables applications in AR/VR, robotics.
While several works have studied exocentric hands [52, 59], no existing approach
performs well in diverse egocentric settings outside of lab setups. We focus on
this gap & study the impact of common practices, i.e. crops as input, camera
information, auxiliary supervision, scaling up datasets, for predicting absolute
3D hand pose from a single egocentric image. We identify 2 important factors: a)
modeling the 3D to 2D projection during imaging of the hand in egocentric views,
b) scaling up training to diverse datasets by leveraging auxiliary supervision.

Let’s unpack each component. Existing methods often operate on image crops,
assume that the image crop is located at the center of the camera’s field of view

https://bit.ly/WildHands
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Fig. 1: WildHands predicts the 3D shape, 3D articulation and 3D placement of the
hand in the camera frame from a single in-the-wild egocentric RGB image and camera
intrinsics. It produces better 3D output compared to FrankMocap [59] in occlusion
scenarios and is more adept at dealing with perspective distortion than HaMeR [52], in
challenging egocentric hand-object interactions from Epic-Kitchens [9] dataset.

with a made-up focal length. These choices are reasonable for exocentric settings
where the location of the hand in the image does not provide any signal for the
hand articulation; and perspective distortion effects are minimal as the hand is
far away & occupies a relatively small part of the camera’s field of view. However,
these assumptions are sub-optimal for processing egocentric images.

Due to the biomechanics of the hand, its location in egocentric images carries
information about its pose. Also, as the hand is closer to the camera in egocentric
settings, it undergoes a lot more perspective distortion than in exocentric images.
3D hand pose that correctly explains the 2D hand appearance in one part of an
egocentric image, may not be accurate for another part of the image. Thus, the
location of the hand in the image must be taken into account while making 3D
predictions. This suggests feeding the 2D location of the hand in the image to
the network. However, the notion of 2D location in the image frame is camera
specific. The more fundamental quantity that generalizes across cameras, is the
angular location in the camera’s field of view. We thus adopt the recent KPE
embedding [54] to augment hand crop features with sinusoidal encodings of its
location in the camera’s field of view & find this to improve performance.

However, just processing image crops the right way is not sufficient for
generalization. The model also needs to be trained on broad & diverse datasets
outside of lab settings. This is not easy as 3D hand pose is difficult to directly
annotate in images. We thus turn to joint training on 3D supervision from lab
datasets and 2D auxiliary supervision on in-the-wild data in the form of 2D
hand masks [6, 10] & grasp labels [6]. To absorb supervision from segmentation
labels, we differentiably render [42] the predicted 3D hand into images and
back-propagate the loss through the rendering. For grasp supervision, we note
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that hand pose is indicative of the grasp type and use supervision from a grasp
classifier that takes the predicted 3D hand pose as input.

Lack of accurate 3D annotations outside of lab settings makes it challenging to
assess the generalization capabilities. To this end, we adopt a zero-shot evaluation
strategy. Even though a single lab dataset has limited diversity, a model that
performs well on a lab dataset without having seen any images from it likely
generalizes well. Furthermore, we collect Epic-HandKps, containing 2D hand
joint annotations on 5K images from the VISOR [10] split of in-the-wild Epic-
Kitchens [7] to evaluate the 2D projections of the predicted 3D hand pose
on everyday images. We also consider the 3D hand poses provided evaluate
on the concurrent Ego-Exo4D [18]. We believe that these evaluations together
comprehensively test the generalization capabilities of different models.

Our experiments (Sec. 4) show the utility of (1) using crops (vs . full images),
(2) inputting 2D crop location (vs. not), (3) encoding the crop’s location in
camera’s field of view (vs. in the image frame), and (4) 2D mask & grasp
supervision. We apply these insights to both convolutional and transformer
models, leading to better performance. We also present WildHands (Fig. 1)
which outperforms FrankMocap [59] on egocentric images and is competitive to
concurrent HaMeR [52] while being 10× smaller & trained with 5× less data.

2 Related Work

Hand pose estimation & reconstruction: Several decades of work [15,28,56]
have studied different aspects: 2D pose [4,63] vs . 3D pose [40,50,68,72] vs . mesh [1,
25,65], RGB [14,22,25] vs . RGBD [57,62–64,66,68] inputs, egocentric [14,50] vs .
allocentric [14,21,22], hands in isolation [48,79] vs. interaction with objects [21,
44, 73], feed-forward prediction [14,22, 25, 60] vs. test-time optimization [3, 24].
Driven by the advances in parametric hand models [53,58], recent work has moved
past 3D joint estimation towards 3D mesh recovery [14, 22, 25, 52, 59, 77] in 3
contexts: single hands in isolation [78], hands interacting with objects [14,70] and
two hands interacting with one another [22,48]. Jointly reasoning about hands &
objects has proved fruitful to improve both hand & object reconstruction [25,36,
74]. While several expressive models focus on 3D hand pose estimation in lab
settings [22,31–33,60], only a very few works [52] tackle the problem in everyday
egocentric images as in Ego4D [17], Epic-Kitchen [7]. We focus on this setting
due to challenges involving perspective distortion, dynamic interactions & heavy
occlusions. We explore both convolutional [14,59] and transformer models [51,52]
to study the impact of using crops, location of the crop in camera’s field of view
& auxiliary supervison in zero-shot generalization to diverse egocentric settings.
Hand datasets: Since 3D hand annotations from single images is difficult to get,
most datasets are collected in controlled settings to get 3D ground truth using
MoCap [14,67], multi-camera setups [21,22,40,44,50], or magnetic sensors [16].
They often include single hands in isolation [79], hand-object interactions [14,
21,22,40] & hand-hand interactions [48]. Different from these datasets with 3D
poses, [6,10,61] provide annotations for segmentation masks [6,10], 2D bounding



4 A. Prakash et al.

3���� 3�����EPIC + Ego4D

Hand 

Encoder

3��3� + 3��2�

+ 3� + 3� + 3���

ARCTIC + AssemblyHands

Hand 

Decoder

KPE 

Enc

KPE 

Enc

Fig. 2: Model Overview. We crop the input images around the hand and process them
using a convolutional backbone. The hand features along with the global image features
(not shown above for clarity) and intrinsics-aware positional encoding (KPE [54]) for
each crop are fed to the decoder to predict the 3D hand. The hand decoders predict
MANO parameters β, θlocal, θglobal and camera translation which are converted to
3D keypoints & 2D keypoints and trained using 3D supervision on lab datasets, e.g .
ARCTIC [14], AssemblyHands [50]. We also use auxiliary supervision from in-the-wild
Epic-Kitchens [10] dataset via hand segmentation masks and grasp labels. The hand
masks are available with the VISOR dataset [10] whereas grasp labels are estimated
using off-the-shelf model from [6].

boxes [61] and grasp labels [6] on internet videos [61] and egocentric images in the
wild [9, 17]. Our work combines 3D supervision from datasets [14,50] captured
in controlled settings with 2D auxiliary supervision, i.e. segmentation masks &
grasp labels, from datasets outside the lab [6,10] to learn models that perform
well in challenging everyday images. We collect Epic-HandKps dataset with 2D
hand keypoints on 5K images from Epic-Kitchens for evaluation in everyday
images outside of lab settings. We also use concurrent Ego-Exo4D [18] that
annotates 2D keypoints in paired ego & exo views to get 3D hand annotations.
Auxiliary supervision: Several works on 3D shape prediction from a single
image [34,69] often use auxiliary supervision to deal with lack of 3D annotations.
[34] uses keypoint supervision for 3D human mesh recovery, while [69] uses
multi-view consistency cues for 3D object reconstruction. Aided by differentiable
rendering [37,43], segmentation and depth prediction have been used to provide
supervision for 3D reconstruction [3,24,35]. We adopt this use of segmentation as
an auxiliary cue for 3D poses. In addition, we use supervision from hand grasp
labels based on the insight that hand grasp is indicative of the hand pose.
Ambiguity: 3D estimation from a single image is ill-posed due to ambiguities
arising from scale-depth confusion [23] and cropping [54]. Recent work [54] points
out the presence of perspective distortion-induced shape ambiguity in image crops
and uses camera intrinsic-based location encodings to mitigate it. We investigate
the presence of this ambiguity for hand crops in egocentric images and adopt the
proposed embedding to mitigate it. Similar embeddings have been used before in
literature, primarily from the point of view of training models on images from
different cameras [12,19], to encode extrinsic information [20,47,75].
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3 Method

We present WildHands, a new system for 3D hand pose estimation from egocentric
images in the wild. We build on top of ArcticNet-SF [14] and FrankMocap [59].
Given a crop around a hand and associated camera intrinsics, WildHands predicts
the 3D hand shape as MANO [58] parameters, shape β and pose θ. θ consists of
angles of articulation θlocal for 15 hand joints and the global pose θglobal of the
root joint in the camera coordinate system. WildHands is trained using both lab
(ARCTIC, AssemblyHands) and in-the-wild (Epic-Kitchens, Ego4D) datasets
with different sources of supervision. Fig. 2 provides an overview of our model.
Next, we describe each component of WildHands in detail.

3.1 Architecture

Hand encoder: Our models uses hand crops as input (resized to 224 × 224
resolution), which are processed by a ResNet50 [27] backbone to get 7× 7× 2048
feature maps. The left and right hand crops are processed separately but the
parameters are shared. We also use global image features in our model, computed
by average pooling the 7× 7× 2048 feature map to get a 2048-dimensional vector.
Incorporating KPE: Recent work [54] has shown that estimating 3D quantities
from image crops suffers from perspective distortion-induced shape ambiguity [54].
This raises concerns about whether this ambiguity is also present when using hand
crops for predicting 3D pose and how to deal with it. Following the study in [54],
we analyze the hands in the ARCTIC dataset (details in the supplementary)
and find evidence of this ambiguity in hand crops as well. Thus, we adopt
the intrinsics-aware positional encoding (KPE) proposed in [54] to mitigate
this ambiguity. Specifically, we provide the network with information about
the location of the hand crop in the field of view of the camera. Consider the
principal point as (px, py) & focal length as (fx, fy). For each pixel (x, y), we
compute θx = tan−1

(
x−px

fx

)
, θy = tan−1

(
y−py

fy

)
& convert them into sinusoidal

encoding [46].
We add KPE to the 7 × 7 × 2048 feature map. KPE comprises sinusoidal

encoding of the angles θx and θy (Sec. 4.1 in the main paper), resulting in
5 ∗ 4 ∗K dimensional sparse encoding (4 for corners and 1 for center pixel) and
H ×W × 4 ∗K resolution dense encoding, where K is the number of frequency
components (set to 4). For the sparse KPE variant, we broadcast it to 7 × 7
resolution whereas for the dense KPE variant, we interpolate it to 7×7 resolution
and concatenate to the feature map. This concatenated feature is passed to a 3
convolutional layers (with 1024, 512, 256 channels respectively, each with kernel
size of 3× 3 and ReLU [49] non-linearity) to get a 3× 3× 256 feature map. This
is flattened to 2304-dimensional vector and passed through a 1-layer MLP to get
a 2048-dimensional feature vector. We do not use batchnorm [30] here since we
want to preserve the spatial information in KPE.
Hand decoder: It consists of an iterative architecture, similar to decoder
in HMR [34]. The inputs are the 2048-dimensional feature vector and initial
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MANO [58] (shape β, articulation θlocal and global pose θglobal, all initialized
as 0-vectors) & weak perspective camera parameters (initialized from the 2048-
dimensional feature vector). Each of these parameters are predicted using a
separate decoder head. The rotation parameters θlocal, θglobal are predicted
in matrix form and converted to axis-angle representation to feed to MANO
model. Each decoder is a 3-layer MLP with the 2 intermediate layers having
1024 channels and the output layer having the same number of channels as the
predicted parameter. The output of each decoder is added to the initial parameters
to get the updated parameters. This process is repeated for 3 iterations. The
output of the last iteration is used for the final prediction.
Differentiable rendering for mask prediction: The outputs from the decoder,
β, θlocal, and θglobal for the predicted hand, are passed to a differentiable MANO
layer [25, 58] to get the hand mesh. This is used to differentiably render a soft
segmentation mask, M , using SoftRasterizer [43, 55]. Using a differentiable hand
model (MANO) and differentiable rendering lets us train our model end-to-end.
Grasp classifier: We use the insight that grasp type during interaction with
objects is indicative of hand pose. We train a grasp prediction head on θlocal,
θglobal & β (predicted by WildHands) via a 4-layer MLP (with 1024, 1024, 512,
128 nodes & ReLU non-linearity after each). The MLP predicts logits for the 8
grasp classes defined in [6] which are converted into probabilities, G via softmax.

3.2 Training supervision

We train WildHands using: (1) 3D supervision on β, θlocal, θglobal, 3D hand
keypoints & 2D projections of 3D keypoints in the image on lab datasets, and
(2) hand masks and grasp labels on in-the-wild datasets.

Lθ = ∥θ − θgt∥22 Lβ = ∥β − βgt∥22 Lcam = ∥(s, T )− (s, T )gt∥22 (1)

Lkp3d = ∥J3D − Jgt
3D∥22 Lkp2d = ∥J2D − Jgt

2D∥22 (2)

Lmask = ∥M −Mgt∥ Lgrasp = CE(G,Ggt) (3)

Here, Lθ is used for both θlocal & θglobal, (s, T ) are the weak perspective camera
parameters and CE represents cross-entropy loss. J2D = K[J3D+(T, f/s)], where
J3D is the 3D hand keypoints in the MANO coordinate frame, K is the camera
intrinsics, f is the focal length, and s is the scale factor of the weak perspective
camera. Note that (.)gt represents the ground truth quantities. The total loss is:

L = λθLθ + λβLβ + λcamLcam + λkp3dLkp3d + λkp2dLkp2d

+ λmaskLmask + λgraspLgrasp (4)

Lab datasets: For ARCTIC, we use λθ = 10.0, λβ = 0.001, λkp3d = 5.0, λkp2d =
5.0,Lcam = 1.0 & set other loss weights to 0. AssemblyHands does not use
MANO representation for hands, instead provides labels for 3D & 2D keypoints
of 21 hand joints. So, we use λkp3d = 5, λkp2d = 5 & set other loss weights to 0.
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In-the-wild data: For Epic-Kitchens & Ego4D, we use hand masks & grasp
labels as auxiliary supervision. While VISOR contains hand masks, grasp labels
are not available. Ego4D does not contain either hand masks or grasp labels. To
extract these labels, we use predictions from off-the-shelf model [6] as pseudo
ground truth. We use λmask = 10.0, λgrasp = 0.1 & set other loss weights to 0.

3.3 Implementation Details

Our model takes hand crops as input. During training, we use the ground truth
bounding box for the hand crop (with small perturbation), estimated using the
2D keypoints & scaled by a fixed value of 1.5 to provide additional context around
the hand. At test time, we need to predict the bounding box of the hand in
the image. On ARCTIC, we train a bounding box predictor on by finetuning
MaskRCNN [26]. This is also used for submitting the model to the ARCTIC
leaderboard. For Epic-HandKps, we use the recently released hand detector
from [5]. All the ablations use ground truth bounding box for the hand crop.

We use the training sets of ARCTIC (187K images) & AssemblyHands (360K),
VISOR split (30K) of EPIC and 45K images from Ego4D kitchen videos to train
our model. WildHands is trained jointly on different datasets with the input batch
containing images from multiple datasets. All models are initialized from the
ArcticNet-SF model trained on the allocentric split of the ARCTIC dataset [14].
All models are trained for 100 epochs with a learning rate of 1e− 5. The multi-
dataset training is done on 2 A40 GPUs with a batch size of 144 and Adam
optimizer [39]. More details are provided in the supplementary.

4 Experiments

We adopt a zero-shot evaluation strategy: 3D evaluation on lab datasets (H2O,
AssemblyHands), evaluation of 2D projections of 3D hand predictions on Epic-
HandKps & 3D evaluation on EgoExo4D [18]. We systematically analyze the
effectiveness of design choices (using crops, KPE), different terms in the loss
function and different datasets used for training. We also report a system-level
comparison on ARCTIC leaderboard and with FrankMocap [59] & HaMeR [52].

4.1 Protocols

Training datasets: We consider 4 datasets for training: 2 lab datasets (ARCTIC
& AssemblyHands) and 2 in-the-wild datasets (Epic-Kitchens & Ego4D).

We select ARCTIC since it contains the largest range of hand pose varia-
tion [14] among existing datasets [4, 21, 22, 44, 67]. We use the egocentric split
with more than 187K images in the train set. We also use AssemblyHands since
it is a large-scale dataset with more than 360K egocentric images in the train
split. Different combinations of these datasets are used for different experiments.

We use egocentric images from Epic-Kitchens & Ego4D as in-the-wild data
for training our model using auxiliary supervision. We use 30K training images
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Fig. 3: Epic-HandKps annotations. We collect 2D joint annotations (shown in blue)
for 5K in-the-wild egocentric images from Epic-Kitchens [8]. We show few annotations
here with images cropped around the hand. We also have the label for the joint
corresponding to each keypoint. Note the heavy occlusion & large variation in dexterous
poses of hands interactiong with objects. More visualizations in supplementary.

available in the VISOR split of Epic-Kitchens and 45K images from Ego4D. To
extract hand masks and grasp labels, we use off-the-shelf model from [6].
Evaluation datasets: We consider 4 datasets for zero-shot generalization exper-
iments: H2O [40], AssemblyHands, Epic-HandKps, and Ego-Exo4D. Note that
these datasets cover large variation in inputs, H2O contains RGB images in lab
settings, AssemblyHands consists of grayscale images and Epic-HandKps and
Ego-Exo4D images show hands performing everyday activities in the wild.

We use the validation splits of H2O and AssemblyHands with 29K and 32K
images respectively. Since 3D hand annotations are difficult to collect for in-the-
wild images, we instead collect 2D hand keypoints annotations on 5K egocentric
images from validation set of VISOR split of Epic-Kitchens. We refer to this
dataset as Epic-HandKps. See sample images from the dataset in Fig. 3. We also
evaluate on the validation split of Ego-Exo4D hand pose dataset.
Epic-HandKps: Epic-HandKps contains 2D annotations for the 21 hand joints
to facilitate evaluation of 2D projections of the predicted 3D keypoints. We
sample 5K images from the validation set of VISOR split of Epic-Kitchens and
get the 21 joints annotated via Scale AI. We use the same joint convention as
ARCTIC [14]. We crop the images around the hand using the segmentation masks
in VISOR and provide the crops to annotators for labeling. Note that most of
these images do not have all the 21 keypoints visible. Following ARCTIC, we
only consider images with atleast 3 visible joints for evaluation. Moreover, since
the models in our experiments required hand crops as input, we only evaluate on
those images for which hand bounding box is predicted by the recently released
hand detector model from [6]. This leaves us with 4724 hand annotations, with
2697 right hands and 2027 left hands. We show some annotations in Fig. 3.
Metrics: For 3D hand pose evaluation, we consider 2 metrics: (1) Mean Per-
Joint Position Error (MPJPE): L2 distance (mm) between the 21 predicted
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Table 1: Benefits of using crops and KPE. Zero shot generalization performance
improves through the use of crops as input (HandNet uses crops vs. ArcticNet-SF uses
full image) and KPE helps (WildHands uses KPE with crops vs. HandNet only uses
crops). All models use the same backbone and are trained on the same data in each
setting for fair comparisons. D : {ARCTIC, AssemblyHands, EPIC}.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

Training data D D - Assembly D D - EPIC

ArcticNet-SF 83.84 325.55 110.76 326.94 114.24 35.02
HandNet 38.06 141.06 109.88 317.49 89.72 31.62
WildHands 31.08 49.49 84.91 164.90 55.84 11.05

& ground truth joints for each hand after subtracting the root joint (this captures
the relative pose). (2) Mean Relative-Root Position Error (MRRPE): the
metric distance between the root joints of left hand and right hand, following [13,
14, 48] (this takes the absolute pose into account). (3) For 2D evaluation on
Epic-HandKps, we measure the L2 Error (in pixels for 224x224 image input)
between ground truth keypoints & 2D projections of predicted 3D keypoints.
Baselines: (1) ArcticNet-SF [14] is the single-image model released with the
ARCTIC benchmark. It consists of a convolutional backbone (ResNet50 [27]) to
process the input image, followed by a HMR [35]-style decoder to predict the
hand and object poses. The predicted hand is represented using MANO [58]
parameterization. (2) FrankMocap [59] is trained on multiple datasets collected in
controlled settings and is a popular choice to apply in in-the-wild setting [3,24,74].
It uses hand crops as input instead of the entire image, which is then processed
by a convolutional backbone. The decoder is similar to HMR [35] which outputs
MANO parameters for hand and training is done using 3D pose & 2D keypoints
supervision. (3) HandNet: Since the training code is not available for FrankMocap,
we are unable to train it in our setting. So, we implement a version of ArcticNet-
SF which uses crops as input along with HMR-style decoder and train it in our
setting using 3D & 2D supervision. This baseline is equivalent to WildHands
without KPE and ArcticNet-SF with crops. (4) HandOccNet [51]: It takes crops
as input and encodes them using a FPN [41] backbone. These are passed to
transformer [71] modules to get a heatmap-based intermediate representation
which is then decoded to MANO parameters. (5) HaMeR [52]: It also takes crops
as input and processes them using a ViT [11] backbone. The features are then
passed to a transformer decoder to predict the MANO parameters. Note that
adversarial loss is not used for training any model in our setting.

4.2 Results

We systematically study the impact of several factors: use of crops (Tab. 1)
& KPE (Tab. 1, Tab. 5), perspective distortion(Tab. 4), auxiliary supervision
(Tab. 3), training datasets (Tab. 6) on both convolutional (Tab. 1) & transformer
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Table 2: Impact on transformer models. We investigate if our insights are useful
for transformer models as well, i.e. if KPE helps on top of positional encodings used in
transformers & if auxiliary supervision leads to better generalization for large capacity
models. All models are trained on the same data in each setting for fair comparisons.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

Training data D D - Assembly D D - EPIC

HandOccNet [51] 60.58 187.24 110.28 293.92 80.96 32.77
HandOccNet + KPE 47.57 72.25 103.30 232.83 78.64 13.54
HaMeR [52] (ViT) 30.57 113.26 79.48 227.59 55.36 25.48
HaMeR (ViT) + KPE 24.15 62.99 71.64 184.55 47.02 9.77

Table 3: Role of auxiliary supervision. We consider grasp and mask supervision
from both Epic-Kitchens & Ego4D to train WildHands and show results in zero-shot
generalization settings. Both grasp & mask supervision lead to improvements in 3D & 2D
metrics, with hand masks providing larger gain compared to grasp labels. Even though
auxiliary supervision is on Epic/Ego4D, it leads to improvements in all settings, i.e.
benefits from training on broad data extend beyond datasets with auxiliary supervision.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

Wildhands (no aux) 39.52 77.07 93.44 208.32 70.39 17.07

+ EPIC grasp 38.34 76.04 90.23 180.85 63.30 –
+ EPIC mask 34.29 60.23 87.94 175.31 56.41 –
+ EPIC grasp + EPIC mask 31.08 49.49 84.91 164.90 55.84 –

+ Ego4D grasp 41.06 111.47 86.44 222.23 69.73 8.22
+ Ego4D mask 38.17 57.93 82.55 145.78 63.43 7.87
+ Ego4D grasp + Ego4D mask 35.62 62.10 79.08 148.12 60.80 7.20

models (Tab. 2) through controlled experiments, i.e. all factors outside of what
we want to check the affect of, are kept constant. All the results are reported in
a zero-shot setting i.e. models are not trained on the evaluation dataset.
Impact of crops: To understand the benefits due to using crops as input instead
of full images, we compare ArcticNet-SF and HandNet in Tab. 1. The only
difference between these two models is: ArcticNet-SF uses full image as input
whereas HandNet uses crops as input. We see gains of 27.7% in MPJPE, 29.7%
in MRRPE, 10.7% in PA-MPJPE, and 9.7% in 2D pose across different settings.
This provides evidence for the utility of using crops as inputs [50,59].
Benefits of KPE: In Tab. 1, HandNet & WildHands differ only in the use of
KPE. This leads go improvements of 20.5% in MPJPE, 56.4% in MRRPE &
65.1% in 2D pose. Compared to impact of crops, the gains are significantly higher
in MRRPE (indicating better absolute pose) and on Epic-HandKps (leading to
better generalization in the wild).
Role of auxiliary supervision: We extract hand masks & grasp labels from
Epic-Kitchens & Ego4D and show their benefits in Tab. 3 in zero-shot evaluation
settings. Mask supervision leads to gains of 8.5% in MPJPE, 21.5% in MRRPE
and 55.5% in 2D pose. Grasp labels improve MPJPE by 2.5%, MRRPE by 7.3%
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Table 4: Comparison of KPE with relevant approaches. KPE is more effective
than other methods for dealing with perspective distortion, e.g . Perspective Correc-
tion [45], Perspective Crop Layers (PCL [76]), or other encodings, e.g . CamConv [12]

.
H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

HandNet +
CamConv 36.86 67.62 96.72 180.73 60.69 17.35
Perspective Corr. 39.95 159.13 59.10 637.32 67.45 28.68
PCL [76] 36.82 158.88 45.18 483.92 63.65 28.21
KPE (WildHands) 31.08 49.49 84.91 164.90 55.84 11.05

Table 5: KPE Design Choices. We study the impact of different design choices of
KPE on WildHands: adding KPE with the input instead of latent features (w/ input),
removing intrinsics from KPE (no intrx), dense variant of KPE from [54]. WildHands
uses sparse variant of KPE. We observe that all variants of KPE provide significant
benefits compared to the model without KPE and the sparse variant performs the best.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

no KPE 38.06 141.06 109.88 317.49 89.72 31.62
KPE w/ input 45.51 80.96 94.45 252.34 93.56 17.30
KPE no intrx 36.97 61.98 92.12 246.45 60.80 11.63
KPE dense 36.86 80.54 95.34 201.33 69.11 11.24
KPE sparse 31.08 49.49 84.91 55.84 55.84 11.05

and 2D pose by 4.3%. While both sources of supervision are effective, hand masks
lead to larger gains. Combining both mask and grasp supervision leads to further
improvements in both 3D & 2D poses across most settings. Moreover, auxiliary
supervision on in-the-wild data also aids performance on lab datasets, suggesting
that generalization gains from training on broad data are not dataset specific.
Comparison of KPE with relevant approaches: In Tab. 4, we find KPE
to be more effective than other methods for dealing with perspective distortion,
e.g . Perspective Correction [45], Perspective Crop Layers (PCL [76]), or different
forms of positional encoding, e.g . CamConv [12].
Impact on transformer models:. We investigate if our insights are useful
to transformer models as well, i.e. if KPE helps on top of positional encodings
already used in transformers and if auxiliary supervision leads to better general-
ization for large capacity models. For this, we implement these components in
HandOccNet [51] & HaMeR [52] and train these models in our settings. From
the results in Tab. 2, we see consistent gains across all settings.
KPE design choice: We ablate different variants of KPE in Tab. 5: adding
KPE with the input instead of latent features (w/ input), removing intrinsics
from KPE (no intrx) and dense variant of KPE from [54]. Note that the sparse
variant performs the best, so we use sparse KPE in WildHands.



12 A. Prakash et al.

Table 6: Effect of scaling up data. Training on more datasets leads to consistent
improvements in models performance on held out datasets.

H2O Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE L2 Error

ARCTIC 47.30 75.17 87.71 17.07
ARCTIC + Assembly 39.52 77.07 70.39 11.05
ARCTIC + Assembly + Ego4D (aux) 35.62 62.10 60.80 7.20

Intrinsics during training: Intrinsics may not always be available in in-the-
wild data used to derive auxiliary supervision. To study this setting, we consider
in-the-wild Ego4D data since it contains images from multiple cameras, and do
not assume access to intrinsics. In this case, we replace the KPE with a sinusoidal
positional encoding of normalized image coordinates w.r.t. center. The Ego4D
results in Tab. 3 follow this setting and we observe that auxiliary supervision
from Ego4D provides benefits even in the absence of camera information.
Scaling up training data: We ablate variants of WildHands trained with
ARCTIC, ARCTIC + AssemblyHands, ARCTIC + Ego4D and ARCTIC +
AssemblyHands + Ego4D in zero-shot settings on H2O, Ego-Exo4D, and Epic-
HandKps. We use 3D supervision on ARCTIC & AssemblyHands and auxiliary
supervision (hand masks, grasp labels) on Ego4D. Tab. 6 shows consistent
improvements in 3D and 2D metrics from both AssemblyHands and Ego4D
datasets, suggesting that further scaling can improve performance further.

4.3 System-level Evaluation

Table 7: Leaderboard results.
WildHands leads the 3D hand pose
on the egocentric split of ARCTIC
leaderboard (as of July 13, 2024).
Method MPJPE MRRPE

ArcticNet-SF 19.18 28.31
ArcticOccNet 19.77 29.75
DIGIT-HRNet 16.74 25.49
HMR-ResNet50 20.32 32.32
JointTransformer 16.33 26.07
WildHands 15.72 23.88

While all of our earlier experiments are con-
ducted in controlled settings, we also present a
system-level comparison to other past methods,
specifically to methods submitted to the ARC-
TIC leaderboard (as of July 13, 2024), and
with the publicly released models of FrankMo-
cap [59] and HaMeR [52].
ARCTIC Leaderboard: Our method
achieves the best 3D hand pose on the ego-
centric split, compared to recent state-of-the-
art convolutional (e.g . ArcticNet-SF, DIGIT-
HRNet, HMR-ResNet50) and transformer (e.g .
JointTransformer) models (as of July 13, 2024). However, it is not possible to do
a detailed comparison since most of these models are not public.
Comparison with FrankMocap [59] and HaMeR [52]: We show results
with the publicly released models in Tab. 8. Note that HaMeR uses a ViT-H
backbone which is much larger and more performant than the ResNet50 backbone
used in WildHands. WildHands outperforms FrankMocap across all metrics and
HaMeR on 3 of 6 metrics while being 10× smaller & trained on 5× less data.
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Fig. 4: Visualizations. We show projection of the predicted hand in the image &
rendering of the hand mesh from 2 more views. WildHands predicts better hand poses
from a single image than FrankMocap [59], HaMeR [14] and ArcticNet [14] in challenging
egocentric scenarios involving occlusions and perspective distortion.

4.4 Visualizations

We show qualitative comparisons of the hand pose, predicted by WildHands,
with FrankMocap on Epic-HandKps (Fig. 4 a) and ArcticNet-SF on ARCTIC
(Fig. 4 b). Looking at the projection of the mesh in the camera view and rendering
of the mesh from additional views, we observe that WildHands is able to predict
hand pose better in images involving occlusion and interaction, e.g . fingers are
curled around the object in contact (Fig. 4) for our model but this is not the
case for FrankMocap. We observe similar trends in ARCTIC (Fig. 4 b) where our
model predicts better hands in contact scenarios. More results in supplementary.
Failure Cases: We observe that images in which the fingers are barely visible,
e.g . when kneading a dough in top row (Fig. 5), or containing extreme poses, e.g .
grasps in bottom row (Fig. 5), are quite challenging for all models.
Limitations: The KPE encoding requires camera intrinsics to be known, which
may not be available in certain scenarios. However, in several in-the-wild images,
the metadata often contains camera information. Also, we currently set the
weights for different loss terms as hyperparameters which may not be ideal since
the sources of supervision are quite different leading to different scales in loss
values. It could be useful to use a learned weighing scheme, e.g . uncertainty-based
loss weighting [2, 29,38].
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Table 8: Systems comparison. We evaluate against publicly released models:
FrankMocap [59] (a popular method for 3D hand pose estimation), and HaMeR [52].
FrankMocap uses a ResNet-50 backbone and is trained on 6 lab datasets. HaMeR uses
a ViT-H [11] backbone and is trained on 7 lab + 3 in-the-wild + HInt datasets across
nearly 3M frames. WildHands model uses a ResNet-50 backbone and is trained on 3
datasets. WildHands outperforms FrankMocap across all metrics and HaMeR on 3 of 6
metrics while being 10× smaller & trained on 5× less data. We expect scaling up the
backbone and datasets used to train WildHands can lead to even stronger performance.

H2O Assembly Ego-Exo4D Epic-HandKps

MPJPE MRRPE MPJPE MRRPE MPJPE L2 Error

FrankMocap [59] (ResNet-50, 6 lab) 58.51 - 97.59 - 175.91 13.33
HaMeR [52] (ViT-H, 7 lab+3 wild+HInt) 23.82 147.87 45.49 334.52 116.46 4.56
WildHands (ResNet-50, 2 lab + 1 wild) 31.08 49.49 80.40 148.12 55.84 7.20
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Fig. 5: Failure cases. We observe that images with (top) barely visible fingers, e.g .
kneading dough or (bottom) extreme grasp poses are challenging for all models.

5 Conclusion

We present WildHands, a system that adapts best practices from the literature:
using crops as input, intrinsics-aware positional encoding, auxiliary sources of
supervision and multi-dataset training, for robust prediction of 3D hand poses on
egocentric images in the wild. Experiments on both lab datasets and in-the-wild
settings show the effectiveness of WildHands. As future direction, WildHands
could be used to scale up learning robot policies from human interactions.
Acknowledgements: We thank Arjun Gupta, Shaowei Liu, Anand Bhattad
& Kashyap Chitta for feedback on the draft, and David Forsyth for useful
discussion. This material is based upon work supported by NSF (IIS2007035),
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