
Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images

Supplementary Material

In this document, we provide more implementation de-
tails, analysis of the results & visualizations of the motions
predicted by our forecasting model, ForeHand4D. The sup-
plementary video summarizes our key ideas & results.

1. Implementation Details
Datasets. Tab. 1 lists the datasets with complete & incom-
plete annotations that we use for training & testing our mod-
els. We use 5 lab datasets: H2O [6], H2O-3D [5], ARC-
TIC [3] Ego, HOT3D [1], & DexYCB [2] with complete 3D
annotations (i.e. MANO labels) but limited data diversity.
For diverse images, we include HoloAssist [10] & Assem-
blyHands [7] (i.e. incomplete annotations). We train jointly
on all the datasets using the available MANO labels and
incomplete supervision from HoloAssist (2D keypoint labels
are estimated using off-the-shelf HaMeR [8]) & Assembly-
Hands. Note that EgoExo4D is not used for training in any
way and is only used for testing the zero-shot generalization
performance of different models.
LatentAct details. One of the baselines in our experiments,
LatentAct [9], is a recent work that takes an image, text,
contact point & an interaction codebook (represented as the
latent space of a VQVAE) as input to predict future 3D hand
& contact trajectory for a single hand. We modify LatentAct
to take only a single image as input and retrain in our setting
since text & contact point inputs are not available in our
setting. To evaluate multimodality and diversity metrics for
LatentAct, different motions can be generated by sampling
different entries from the interaction codebook.

2. Analysis
Understanding translation & articulation components
in the forecasting task. In Tab. 2, we analyze the impact
of translation & articulation on the metrics by using ground
truth (GT) articulation and wrist poses in different ways:
• (Row 1): Static GT Articulation at t = 0 + GT wrist pose

at t = t: This measures how much the hand articulation
changes over the motion.

• (Row 2): GT Articulation at t = t + Static GT wrist pose
at t = 0: This measures how much the wrist translates
with respect to the first time step.

• (Row 3): Full static GT pose, i.e. Static GT Articulation
at t = 0 + Static GT wrist pose at t = 0: This considers
changes in both articulation and translation as the motion
progresses.

• (Row 4): Full static predicted pose, i.e. Static Predicted
Articulation at t = 0 + Static Predicted wrist pose at t = 0:
Pose predictions for the given frame, copied over as the

forecast for all future frames. Here predictions are coming
from a model hand pose predictor trained on our datasets.

• (Row 5): Same as Row 4, but predictions come from off-
the-shelf HaMeR [8].
This analysis highlights that translation constitutes a sig-

nificant part of the metrics and EgoExo4D involves much
more dexterous actions compared to lab datasets.

For evaluations involving GT poses, the M and M-F
values should ideally be the same (as is the case with in-
domain lab datasets) since the pose at first timestep is the
same. However, that is not the case with AssemblyHands
and EgoExo4D since they often contain invalid or missing
labels for several joints due to which SVD does not converge
during the procrustus alignment.
Inference time. Our forecasting model uses a diffusion
framework with 1000 denoising steps. At inference, sam-
pling is done iteratively with each denoising step taking 0.01
seconds on average, with a total time of 13.48 seconds (this
also includes other operations, e.g. computing image fea-
tures, coordinate system transformations, MANO forward
pass) for generating 1 sample for the input image. The
transformer regressor baseline takes 0.074 seconds to make
predictions. The inference time of the diffusion model can
be improved by reducing the number of denoising timesteps.
Performance trends over time. In Fig. 1, we see M
(MPJPE) does not start from 0. This is because the model
finds it hard to precisely predict the hand translation in the
given frame (likely due to scale ambiguity in predicting met-
ric 3D from a single image). M-F, where we factor out this
imperfection by aligning to the ground truth hand in the first
frame, shows a clear increasing trend in both ARCTIC and
AssemblyHands [7].
Initial non-zero error in Fig. 1 (right). The M-F metric,
in Fig. 1 (right), aligns the predicted trajectory with the
ground truth at the first timestep only before computing
MPJPE. The small residual error ( 2cm) at the first time
step, even after this alignment, is due to the errors in the
predicted hand articulation. This is often the case in the
occluded part of the hand, where the predicted articulation is
not accurate. This is comparable to the 1cm error that SOTA
single-frame 3D hand pose papers report (e.g. MPJPE-PA
value for HaMeR [8] on EgoExo4D). Since our task involves
predicting future hand poses as well, the slightly higher
initial error could be due to the model optimizing the quality
of future frames at the cost of initial hand articulation.
Performance trade-off on in-domain vs. out-of-domain
data. When training only on in-domain datasets, the fore-
casting model has access to accurate 3D ground truth and
likely overfits to the images seen in in-domain datasets. We
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Dataset Name Viewpoint Lab / Wild Annotations # sequences # objects Role (L) Role (F )

ARCTIC [3] Ego Lab MANO 4499 11 train train (MANO), test
H2O [6] Ego Lab MANO 534 8 train train (MANO), test
H2O3D [5] Exo Lab MANO 57 10 train train (MANO)
HOT3D [1] Ego Lab MANO 6000 33 train train (MANO), test
DexYCB [2] Exo Lab MANO 5743 20 train train (MANO), test

HoloAssist [10] Ego Wild 2D Kps 7461 120 – train (L(2D Kps)
AssemblyHands [7] Ego Lab 3D + 2D Kps 2134 101 test train (L(2D + 3D Kps)), test

EgoExo4D [4] Ego Wild 3D Kps 53 – – zero-shot testing

Table 1. Datasets used in this work. We train jointly on all the datasets using the available MANO labels and incomplete supervision
from HoloAssist (2D keypoint labels are estimated using off-the-shelf HaMeR [8]) & AssemblyHands. Note that EgoExo4D is not used for
training in any way and is only used for testing the zero-shot generalization performance of different models.

inject 2D supervision from diverse datasets in the form of
imputed 3D labels via our lifting model. The imputed labels
are not always accurate, leading to noisy 3D ground truth,
which may hinder the performance of the forecasting model
on in-domain lab datasets.

3. Visualizations
Qualitative comparisons. We visualize the predicted mo-
tions for both our model and the Transformer Regressor
(3D + 2D sup.) baseline on lab datasets (Fig. 4, Fig. 5) and
zero-shot EgoExo4D (Fig. 2, Fig. 3). Our motion predic-
tions span longer trajectories, are smoother and better placed
in the scene compared to the baseline. Our motions are
significantly more plausible on novel datasets (EgoExo4D).
Multimodal predictions. Our forecasting model, Fore-
Hand4D, generates different forecasts from the same input
image showing different modes of object interactions (Fig. 6)
on both lab datasets (ARCTIC, H2O, DexYCB) and zero-
shot on EgoExo4D.
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Method Articulation Wrist Pose
In-domain datasets AssemblyHands EgoExo4D (Zero-shot)

M M-G M-F MR M M-G M-F MR M M-G M-F MR

GT at t = 0 GT at t = t 4.5 3.0 4.6 2.3 5.0 3.6 5.9 3.4 15.1 10.5 25.1 2.6
GT at t = t GT at t = 0 13.7 6.7 13.6 12.0 13.4 7.4 13.3 15.5 23.0 13.3 18.5 19.1
GT at t = 0 GT at t = 0 15.4 8.2 15.2 12.0 14.1 8.6 13.9 15.5 22.7 13.5 18.2 19.1

Predictor trained on same dataset Pred at t = 0 Pred at t = 0 23.3 8.4 15.4 16.8 29.8 8.9 16.1 26.2 28.8 13.5 19.2 18.9
Predictions from HaMeR [8] Pred at t = 0 Pred at t = 0 26.8 8.5 15.5 18.5 31.9 9.0 14.2 38.8 32.7 13.6 18.3 29.8

Table 2. Understanding translation and articulation components in the forecasting task. To understand what makes this forecasting
problem hard, we evaluate variations of using the articulation and wrist pose in the given frame as forecast. (Row 1): Static GT Articulation
at t = 0 + GT wrist pose at t = t: This measures how much the hand articulation changes over the motion. (Row 2): GT Articulation at
t = t + Static GT wrist pose at t = 0: This measures how much the wrist translates with respect to the first time step. (Row 3): Full static
GT pose, i.e. Static GT Articulation at t = 0 + Static GT wrist pose at t = 0: This considers changes in both articulation and translation as
the motion progresses. (Row 4): Full static predicted pose, i.e. Static Predicted Articulation at t = 0 + Static Predicted wrist pose at t = 0:
Pose predictions for the given frame, copied over as the forecast for all future frames. Here predictions are coming from a model hand
pose predictor trained on our datasets. (Row 5): Same as Row 4, but predictions come from off-the-shelf HaMeR [8]. These highlight that
translation constitutes a significant part of the metrics & EgoExo4D involves much more dexterous actions.

Figure 1. Performance trends over time. Error increases over time on both (top) ARCTIC & (bottom) Assembly datasets. ARCTIC
consists of shorter sequences (< 2 sec) whereas Assembly has longer sequences (upto 8 sec) (Standard deviation is computed per time-step
after aggregating errors from 5 generated motions for each sample).
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Figure 2. ForeHand4D forecasts bimanual 3D hand motion from single RGB image input. We show forecasts from ForeHand4D on
everyday images from the EgoExo4D [4] dataset. Left hand shown in pink, right hand in blue. Color saturation decreases as time proceeds,
i.e. further out timesteps are denoted by lighter shades. We render the predicted motion on the input image & from another view. Our motion
predictions span longer trajectories, are smoother, and better placed in the scene compared to the baseline.
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Figure 3. ForeHand4D forecasts bimanual 3D hand motion from single RGB image input. We show forecasts from ForeHand4D on
everyday images from the EgoExo4D [4] dataset. Left hand shown in pink, right hand in blue. Color saturation decreases as time proceeds,
i.e. further out timesteps are denoted by lighter shades. We render the predicted motion on the input image & from another view. Our motion
predictions span longer trajectories, are smoother, and better placed in the scene compared to the baseline.
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Figure 4. We show forecasts from ForeHand4D on images from 3 lab datasets: (top) ARCTIC [3], (middle) H2O [6], (bottom) DexYCB [2].
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Figure 5. We show forecasts from ForeHand4D on images from 3 lab datasets: (top) ARCTIC [3], (middle) H2O [6], (bottom) DexYCB [2].
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Figure 6. Multiple forecasts, by ForeHand4D, from same input: (top) 3 lab datasets (ARCTIC,H2O,DexYCB) (bottom) zero-shot EgoExo4D.
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