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Figure 1. ForeHand4D forecasts bimanual 3D hand motion from single RGB image input: (left) on 2 lab datasets (ARCTIC, H2O), (right)
zero-shot forecasts on challenging EgoExo4D. Left hand shown in pink, right hand in blue. Color saturation decreases as time proceeds, i.e.
further out timesteps are denoted by lighter shades. We render the predicted motion on the input image & from another view. Our predictions
span longer trajectories, are smoother & better placed in the scene compared to the baseline, especially on everyday images from EgoExo4D.

Abstract

We tackle the problem of forecasting bimanual 3D hand
motion & articulation from a single image in everyday set-
tings. To address the lack of 3D hand annotations in diverse
settings, we design an annotation pipeline consisting of a
diffusion model to lift 2D hand keypoint sequences to 4D
hand motion. For the forecasting model, we adopt a diffusion
loss to account for the multimodality in hand motion distri-
bution. Extensive experiments across 6 datasets show the
benefits of training on diverse data with imputed labels (14%
improvement) and effectiveness of our lifting (42% better)
& forecasting (16.4% gain) models, over the best baselines,
especially in zero-shot generalization to everyday images.

1. Introduction

This paper develops ForeHand4D, a system for forecasting
bimanual 3D hand motion from a single everyday RGB im-
age as input. ForeHand4D can operate on diverse everyday
images to output the full articulation of the hand in 3D for
both hands over long time horizons while only requiring a
single RGB image. This expands capability along several
axes: generalization, prediction horizon, and completeness
of output; thereby improving the utility of such models for
downstream human robot interaction & AR/VR applications.
Fig. 1 shows sample outputs from ForeHand4D, including
on images from EgoExo4D not used for training in any way.

Forecasting hand motion is difficult because of the com-
plex ways in which hands interact with one another and
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Figure 2. Overall Training Pipeline. We first use the 2D & 3D annotations in lab datasets to train a lifting diffusion model, L that maps 2D
keypoints sequences to 3D MANO hands. We then run L on diverse datasets with 2D annotations to generate 3D annotations. Finally, the
forecasting model F is trained on lab & diverse datasets with complete 3D supervision.

the surrounding environment. Because hands can do many
different things in the future (i.e. output is multi modal),
training a regressor is not suitable. Therefore, we adopt a
diffusion loss for training our models. We find that this suc-
cessfully mitigates problems arising due to multi modality
and leads to a large improvement in forecasting performance
on a suite of lab datasets as shown in Tab. 3, representing
the first experimental results on this challenging problem.

However, there is a mismatch between the data we can
train such a diffusion models on (lab datasets where complete
3D ground truth, i.e. MANO [43] parameters, are available)
vs. the data we would like this diffusion model to work on
(everyday images outside of lab settings, that may have some
2D annotations but no 3D labels). Because a diffusion model
needs complete ground truth for training (the forward diffu-
sion process adds noise to the ground truth before denoising),
prior techniques [35, 51, 56] that leverage weak supervision
via reprojection losses are not applicable since MANO pa-
rameters are not available. Generating 3D pseudo-labels
from available 2D annotations is the obvious solution but
existing methods, e.g. EasyMocap [47] ,that directly opti-
mize the MANO parameters using 2D reprojection loss, are
not effective since they are highly sensitive to initialization,
optimization objective & hyper-parameter tuning. Our inno-
vation is to develop a learned lifting model that lifts available
2D annotations into complete 3D annotations. This increases
the diversity of data for training the forecasting model, and
thereby its performance on held-out datasets (Tab. 3).

Our overall pipeline is shown in Fig. 2. We first use 3D
annotated lab datasets to develop the lifting diffusion model,
L. This model takes as input 2D hand keypoints & camera
parameters (intrinsics & extrinsics) across all timesteps in a
sequence to output the corresponding 3D hand articulation
& placement. We use L to lift 2D annotations on diverse
datasets into 3D ground truth. We then use these imputed 3D
labels, alongside true 3D ground truth labels on lab datasets
to train our forecasting diffusion model, F . Because 2D
annotations are more readily available on diverse datasets,
this increases the data diversity for training the forecasting
model. Experiments reveal that training on diverse data, en-
abled by our method, substantially improves the predictions

of learned models on both everyday images from EgoExo4D
(zero-shot generalization) & lab datasets (Tab. 3), and out-
performs LatentAct [40] (adapted & retrained to work in our
setting) by 16.4%. It also improves over alternative ways
of injecting weak supervision via auxiliary 2D forecasting
heads. Also, our lifting model generates more accurate 3D
labels, 65.3% better than the recent HaWoR method [66]
(Tab. 1). Code & models will be released upon publication.

2. Related Work

3D Hand Prediction from Images and Videos. Given im-
age or video input, many recent works make predictions
(and not forecasts) for hands presents in them from egocen-
tric [13, 14, 24, 25] and exocentric observations [18, 19, 28,
31, 32, 37, 44, 60, 63]. HaMeR [35] is a high-performing
recent work that makes 3D hand predictions from single
images, while Dyn-HaMR [61] makes temporally consistent
3D hand predictions from video input. Predictions on videos
are made via feed forward model [59], test-time optimiza-
tion [66] or hybrid approaches [21].
Hand Forecasting. Prior works have looked at forecasting
specific aspects of hand motion in different settings. Works
differ in what they output and from what input. On the output
side: [7, 40] produce hand motion, articulation & contact
maps, Bao et al. [4] forecast the 3D wrist location, while Liu
et al. [29] forecast only the 2D wrist location. On the input
side, [4, 6, 15, 29, 57] only use RGB images as input, while
[7, 9, 40, 65, 68] are conditioned on privileged information
in the form of articulating 3D objects or 3D contact points
on objects. Papers also tackle different settings: full body
forecasting [6, 57], single hand-object interaction [4, 15, 40]
or bimanual interactions [7, 9, 29, 65, 68]. Thus, past work
addresses individual aspects of the problem, but none as
comprehensively as ours: they either produce rich 3D output
from stronger input (3D object models) or use RGB images
but predict only coarse 2D/3D results.
3D pose from 2D keypoints. Several works in the human
pose literature have explored estimating 3D pose from 2D
keypoints using different approaches, e.g. linear models [41],
probabilistic models [48], directly optimizing 3D poses [1],
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Figure 3. Architecture for Forecasting Model. We modify MDM [49] to condition on images features extracted from a ViT backbone.
Each input & output token is 198-dimensional: 2 hands × (16 (joints) × (6 (6D rotation for each joint) + 3 (wrist translation))).

MLP [30, 33], convolutional [33, 36, 50], graph-based [5,
10, 53], transformer [27, 45, 64, 69], diffusion [23, 26] &
normalizing flows [52]. These works operate on different
types of inputs, e.g. static 2D pose [1, 30, 52], 2D pose
estimated from image [33, 48], seqeunce of 2D keypoints [5,
23, 45, 53, 64, 69] or multi-view 2D poses [26]. These ideas
have also been extended to estimated 3D hand poses using
2D keypoints [71] or 2D/2.5D heatmaps [19, 22]. Building
on top of these works, we design a diffusion-based lifting
model to estimate 3D hand poses from 2D keypoints to scale
up 3D hand annotations for diverse settings.
Learning from Incomplete 3D Ground Truth. Prior works
often inject weak supervision into 3D regression models via
a 2D reprojection loss [35, 51, 56]: the predicted 3D is dif-
ferentiable rendered or projected into 2D and encouraged
to match the 2D annotations. However, this doesn’t natu-
rally extend to diffusion models that need to know the score
∇xp(x) at different locations x. While we can render a de-
noised 3D shape and compute partial supervision on it using
the reprojection loss (i.e. we don’t know ∇xp(x) but only a
projection of it), we don’t know what point x in space is this
partial supervision for. Recent works have explored training
diffusion models on corrupted or partial data [2, 11] using
EM [20] or aggressive masking [55]. However, our setting
is different because we don’t quite have partial ground truth,
but rather a projection of the 3D shape into 2D.

3. 4D Hand Forecasting

Given a single RGB image I showing a hand object scenario,
the task is to forecast the 3D hand motion for both hands.
We use MANO hand representation [42], consisting of the
shape β, articulation θ & global wrist pose cTw, where c is
the world frame located at the camera center. The goal is
to learn a function F (I) that takes the image I as input and
predicts Φt = {(θlt, cT l

wt
, θrt , cT

r
wt
)} for all timesteps in the

prediction horizon, where l & r superscripts denote left &
right hand. We do not predict β (we use the mean β shape

from the MANO model when β is not available).
Our forecasting model F is realized using a transformer

& trained using a diffusion loss (Sec. 3.1). A diffusion
loss means we need complete 3D annotations for training.
Thus, we can only use carefully constructed lab datasets
with complete 3D annotations (e.g. ARCTIC [13], H2O [24],
H2O-3D [19], HOT3D [3], & DexYCB [8]) for training F .
This severely limits the diversity of data that F is exposed to,
and thereby its generalization capabilities. To mitigate this
limitation, we develop a lifting model, L to lift 2D key point
annotations to complete 3D annotations (Sec. 3.2). Our final
forecasting model is trained on the union of 3D lab datasets,
and 2D in-the-wild datasets lifted to 3D, as shown in Fig. 2.

3.1. Forecasting Model, F

Since temporal forecasts are multimodal, we adopt a condi-
tional diffusion model to represent F , i.e. given the inputs &
noisy versions of the desired outputs, F predicts the noise
that was added to the outputs. F uses a ViT [12] backbone
to encode the image I . We modify the diffusion model from
MDM [49] for our setting. Specifically, we change the con-
ditioning to provide image features as input. Following [49],
we use a transformer encoder for the denoising (Fig. 3) and
6D representation [70] for rotation. All the 3D poses are
represented in the camera coordinate frame at t = 0 and the
predictions are also done in the camera frame at t = 0.

3.2. Lifting Model, L

The lifting model takes as input 2D hand keypoints & camera
parameters over a sequence to output the 3D hand placement
& articulation in MANO representation in the camera frame
from the first frame. It is realized using a conditional diffu-
sion model with a transformer backbone (Fig. 4).

Conditioning Module. Because 2D hand keypoints and
the camera parameters are intertwined, we concatenate dif-
ferent representations to use as conditioning to the diffusion
model: (1) Extrinsics: 6D rotation representation and 3D

3



Transformer Encoder

Linear

Denoising timestep, 𝑡 𝜃!" , T#!
$ 𝜃!% , T#!

& 𝜃'" , T#"
$ 𝜃'% , T#"

&

+ +

3 tokens per time step: 
Plücker, KPE, Extrinsics

+ … 

… 

P.E.

… 

𝜃!" , T#!
$ 𝜃!% , T#!

& 𝜃'" , T#"
$ 𝜃'% , T#"

&

Linear

Noised 
Tokens

Denoised 
Tokens

KPE

𝒙()

𝐾𝑅( 𝑡(]

Plücker 𝑘

+ +

Concatenate 
for all key 
points

Extrinsics Intrinsic

2D key 
point𝑡

Conditioning Module

Conditioning 
Module

𝑘

Figure 4. Architecture for Lifting Model. We modify MDM [49] to condition on a sequence of 2D hand keypoints & camera parameters.
The conditioning module combines different input representations: 3D pose (rotation, translation) of camera, Plücker rays [67] & KPE [38].

translation. (2) Plücker rays: These encode the camera
rays joining the camera center with the 2D keypoints in the
image. Specifically, let xk

t = (xk
t , y

k
t , 1) denote the 2D

location of the kth hand keypoint at time step t in homoge-
neous coordinates, K denote the camera intrinsic parame-
ters, and Rt, tt denote the camera rotation and translation,
such that K[Rt|tt]X maps a world point X into the camera
frame. The ray joining the camera center to xk

t is given by
λR−1

t K−1xk
t − K−1tt. We represent this ray using the

6D Plücker representation [67]. (3) KPE encoding [38]:
This captures the location of each 2D keypoint in the field of
view of the camera (with principal point (px, py) and focal
length (fx, fy)). For each (xk

t , y
k
t ), we estimate the angles

ϕx = tan−1((xk
t−px)/fx) and ϕy = tan−1((ykt − py)/fy)

and compute sinusoidal encodings.
Training Data. For training the lifting model, we render

out 3D hand and camera trajectories in the lab datasets into
2D hand keypoints trajectories. We also introduce augmen-
tations in the camera trajectories to increase diversity in data
for training. Because of these augmentations and not using
any visual information, the lifting model generalizes very
well to datasets not seen during training.

3.3. Using Lifting Model, L, to Impute 3D Labels
for Training the Forecasting Model, F

We impute MANO labels on diverse datasets by running the
lifting model L on 2D annotations in diverse datasets (As-
semblyHands [34] & HoloAssist [54]). Rather than directly
using the 3D output from the lifting model, we adjust the
3D output to get it to better conform to the 2D annotations.
Concretely, we pass the complete 3D predictions from the
lifting model to the differentiable MANO model, M, to get
the 3D hand joints, which are then projected into the image
with known intrinsics to get 2D keypoints. We optimize the
reprojection loss on 2D keypoints labels (either available in
datasets like AssemblyHands or estimated from off-the-shelf
model [35]) using gradient descent for 1000 iterations with

a learning rate of 0.01 & gradient norm clipped to 1 for
regularization. For datasets with 3D keypoint labels (but no
MANO labels), we also add a L2 loss on 3D keypoints.

3.4. Implementation Details

The denoiser in both F & L is implemented as a transformer
encoder with 16 layers, 4 heads, latent dimension of 1024 &
dropout of 0.1. The ViT backbone for computing image fea-
tures is initialized from [35]. Following [49], we use 1000
steps for denoising with cosine noise schedule. We also mask
out the conditioning tokens (image features for F and 2D
keypoints + camera parameters for L) with probability 0.1
to simulate noise in diverse settings. For augmentation, we
add pixel-level noise & image scaling for forecasting and we
jitter & scale 2D keypoints for lifting. Both F & L predict
normalized translation value (using mean & standard devia-
tion across all the wrist translations in the training dataset).
For L, we find the combination of extrinsics, plucker rays &
KPE to work the best. The predictions span 256 timesteps.
Both F & L are trained in a mixed-dataset setting across 4
NVIDIA L40S or 4 A40 GPUs. Since different datasets have
varying length sequences, we mask out the extra timesteps.

4. Experiments
Our experiments test (a) the difficulty of the forecasting
task, (b) how well does our model forecast hand motion &
articulation from a single image w.r.t. related past methods,
(c) the effectiveness of a diffusion head over a regression
head, d) does incorporating diverse 2D labeled data help
performance, (e) how does our lifting approach compare to
other ways of injecting 2D supervision, (f) the quality of our
imputed labels, and (g) what design decisions matter?
Metrics. We adopt metrics from human motion litera-
ture [16, 17, 46, 49, 58, 62] that measure the accuracy and
quality of predicted motions. For accuracy, we use: (a) Mean
Per Joint Position Error (M) in 3D (in cm), averaged over
time, keypoints & 2 hands, (b) Mean Relative-Root Position
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Figure 5. 4D hand predictions from the lifting model, that predicts 3D MANO parameters from 2D keypoints & camera parameter inputs.
We show 4 frames with the MANO mesh rendered onto the image for visualization (images are not used as input).

Method Assembly Hands

M M-G M-F MR

HaMeR [35] 29.7 6.8 16.1 36.9
EasyMocap [47] 36.3 7.7 16.8 15.4
HaWoR [66] 61.6 6.1 46.3 131.1
(Ours) Lifting 9.6 5.1 10.0 11.7

Ours + 2D refinement 3.2 2.7 2.5 3.7

Table 1. Our Lifting model is better than other methods for esti-
mating 3D MANO labels for video trajectories on Assembly.

Error (MR) in 3D (in cm) that measures the translation be-
tween the root joint of left & right hand. We also include
two variants of M: (c) M-G (predictions are globally aligned
to the ground truth before computing M) & (d) M-F (predic-
tions are aligned to the ground truth at the first timestep). By
doing some form of alignment, M-G & M-F focus on the
accuracy of the predicted articulation. Lower is better.

For quality (forecasting task only): (a) Diversity: mea-
sures the variance over a set of motions across the full dataset
of predicted or ground truth motions. Specifically, we com-
pute the mean pairwise L2 distance (in the MANO space)
among the motions. As in [16], the predicted diversity should
be comparable to that of the ground truth motions. (b) Multi-
modality: measures the variation within forecasted motions
from the same input, computed as the mean pairwise L2
distance between 5 samples per input (higher is better).

Datasets. We use 5 lab datasets: H2O [24], H2O-3D [19],
ARCTIC [13] Ego, HOT3D [3], & DexYCB [8] with com-
plete 3D annotations (i.e. MANO labels) but limited data
diversity. For diverse images, we include HoloAssist [54] &
AssemblyHands [34] (i.e. incomplete annotations). The 2D
keypoints on HoloAssist are estimated using HaMeR [35].
AssemblyHands contain 3D & 2D keypoints but no MANO
labels. We evaluate in 3 settings: (a) In-domain datasets:
held-out test splits from training datasets (generalization to
novel instances), (b) AssemblyHands: a held-out test split
that is not used for imputing labels, (c) EgoExo4D: zero-shot
generalization (not used for training in any way).

Method Assembly Hands

M M-G M-F MR

No camera poses 26.3 8.2 16.1 15.5
Extrinsics + KPE 17.9 7.6 16.4 15.8
Plücker rays 14.0 5.5 12.5 12.6
Extrinsics + Plücker + KPE 9.6 5.1 10.0 11.7

Table 2. Analysis of input representation for Lifting model
(Sec. 3.2). Different ways of encoding camera parameters help
with Plücker rays being the most effective.

4.1. Lifting Results

We start by evaluating the lifting model & quality of imputed
labels (Tab. 1, Tab. 2). We evaluate using 3D keypoint labels
on AssemblyHands (not used for training the lifting model).
Comparisons to existing pseudo-labeling approaches. We
consider 3 alternatives: (a) predictions from HaMeR [35],
a high-performing 3D hand pose estimator, (b) EasyMo-
cap [47]: optimizes 3D MANO to conform to given 2D hand
keypoints with temporal smoothing & pose regularization,
and (c) HaWoR [66], a recent method that uses a data-driven
motion priors to reconstruct the 3D hand motions in the
world-frame. Tab. 1 shows that our lifting model produces
the most accurate pseudo MANO labels across all metrics.
These can be refined further using a 2D reprojection loss
with the input 2D keypoints. For fair comparisons, we modi-
fied EasyMocap to use ground truth camera poses in global
motion initialization, and provide the same keypoints (as
tracks) to HaWoR that are used by our lifting model.
Ablations for design of the lifting model. In Tab. 2 we see
that conditioning only on 2D keypoint trajectories performs
poorly. Injecting camera extrinsics (rotation, translation) &
intrinsics via angular encoding of 2D keypoints (KPE), in
Row 2, helps quite a bit. Using the Plücker rays in Row
3 also provides benefits. Our final model that uses all the
different encodings together, performs the best.
Qualitative Visualizations. Fig. 5 shows qualitative exam-
ples of the 2D to 3D lifting achieved by our model. The
lifting model accurately places and articulates the hands.
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Method In-domain datasets AssemblyHands EgoExo4D (Zero-shot)

M M-G M-F MR M M-G M-F MR M M-G M-F MR

Static Pose (trained in our setting) 23.3 8.4 15.4 16.8 29.8 8.9 16.1 26.2 28.8 13.5 19.2 18.9
Static Pose (from HaMeR [35]) 26.8 8.5 15.5 18.5 31.9 9.0 14.2 38.8 32.7 13.6 18.3 29.8
LatentAct [40] (adapted for our task) 17.7 7.4 16.2 17.6 21.3 9.1 17.2 22.8 26.4 13.5 19.5 49.9
Transformer Regressor (3D sup.) 15.3 6.7 14.7 14.8 30.0 8.6 21.6 25.5 29.2 12.9 21.7 20.9
Transformer Regressor (3D + 2D sup.) 15.1 6.9 14.6 14.9 27.5 8.5 18.4 19.3 28.9 13.0 21.3 19.0
(Ours) ForeHand4D (3D sup.) 14.8 5.9 13.3 12.4 27.9 8.4 18.1 18.1 24.0 13.0 20.9 19.6
(Ours) ForeHand4D (3D + 2D sup.) 17.1 6.5 15.3 13.5 20.3 8.4 15.4 16.5 18.8 13.2 18.9 13.5

Table 3. Baseline comparisons. Our ForeHand4D model improves M & MR by 36.02% compared to static pose methods, indicating
significant hand movement in our setting. Compared to the transformer regressor baseline (Row 4 vs Row 6), we see improvements in 11/12
metrics. Adding weak supervision from 2D labels leads to further gains in M & MR, especially in the zero-shot generalization to EgoExo4D.

Method Diversity Multimodality

Reference (ground truth distribution) 39.16 N/A

Transformer Regressor 187.82 N/A
LatentAct [40] (adapted for our task) 302.45 13.04
(Ours) ForeHand4D 41.14 19.64

Table 4. ForeHand4D produces multimodal output that better
matches the diversity of the ground truth trajectories on ARCTIC.

4.2. Forecasting Results

Since there is no prior work that tackles this problem, we
adapt recent work LatentAct [40] to work in our setting and
construct several baselines:
• Static Pose Baseline assumes a stationary hand & uses 3D
hand pose estimates on the input image as the forecast. We
consider 2 variants: training a pose predictor in our setting
and using outputs from off-the-shelf HaMeR [35] (a high
performing model trained on 10 datasets).
• Transformer Regressor uses the same architecture as our
model but directly regresses the future hand motion & artic-
ulation. We consider 2 variants: 3D sup. is trained with the
same 3D ground truth as ForeHand4D, 3D sup. + 2D sup.
also uses 2D supervision via a reprojection loss on the pre-
dicted 3D (following [35, 39]). This is only possible because
the model directly regresses the 3D output. We jointly train
on 5 datasets with 3D labels & 2 datasets with 2D labels.
• LatentAct [40] takes an image, text, contact point & an
interaction codebook (represented as the latent space of a
VQVAE) as input to predict future 3D hand & contact tra-
jectory for a single hand. We adapt LatentAct to take only a
single image as input and retrain it in our setting.
• (Ours) ForeHand4D We consider 2 variants of our Fore-
Hand4D model, based on the supervision used. 3D sup. is
only trained on 5 datasets with 3D labels. 3D sup. + 2D sup.
is our final model that is trained jointly on 5 datasets with
3D labels & the imputed 3D labels from our lifting model.
• We compare to other ways of using 2D labels with a diffu-
sion model. This amounts to attaching another head to make

2D predictions so that the image backbone also gets gradi-
ents from 2D labels. We consider: 2D Regression Head &
2D Diffusion Head (denoising is done for 2D keypoints).
Static pose results. The large values of M & MR for static
pose methods indicate that there is indeed a significant hand
movement across timesteps since M & MR are translation-
focused metrics. Our ForeHand4D model leads to gains of
36.02% on M & MR across all settings. HaMeR scores the
highest on M-F in EgoExo4D / Assembly, likely because it
is trained across diverse images from 10 datasets.
Diffusion outperforms transformer-based regressor.
Comparing Row 6 vs Row 4 in Tab. 3 we see improvements
in 11/12 metrics. Gains are particularly large in M & MR,
especially in zero-shot setting. Moreover, we can sample
different plausible forecasts from our ForeHand4D (Fig. 6).
Injecting 2D supervision improves performance on novel
datasets. Comparing Rows 6 & 7 in Tab. 3, we see that
injection of 2D supervision leads to large improvement in
metrics on Assembly & EgoExo4D. Notably, M, M-F, &
MR improve by 10 – 30%. The Transformer Regressor
baseline benefits less from these additional 2D labels (Row
4 vs Row 5) and overall ForeHand4D outperforms it on 7/8
metrics (Row 4, 5 vs Row 7). This suggests a) the utility of
incorporating weak supervision in ForeHand4D, and b) the
effectiveness of our proposed scheme in doing so.

Also, we find that injecting 2D supervision mildly hurts
performance on in-domain datasets (Row 6 vs Row 7, Row
4 vs Row 5) for both models. We believe this is because the
same model now has to learn a much broader distribution
than what is tested in the in-domain datasets: 80 objects vs.
300 objects and from many different viewpoints & cameras.
ForeHand4D may also suffer because the imputed labels are
not perfect (Tab. 1). Nevertheless, injecting 2D labels helps
by a lot on datasets without complete 3D annotations.
Comparison with LatentAct. We see benefits of 16.4%
using our ForeHand4D model with MR gaining the most.
This is likely due to LatentAct requiring additional inputs, in
the form of contact points & text to better place the predicted
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Figure 6. Different forecasts from the same input image. We show 4 samples for 2 input images from ForeHand4D, indicating different
modes of interaction with the object: (top) the box lifted in different directions, (bottom) the right hand moves towards different objects.

Method In-domain datasets AssemblyHands EgoExo4D (Zero-shot)

M M-G M-F MR M M-G M-F MR M M-G M-F MR

No Additional 2D Supervision 14.8 5.9 13.3 12.4 27.9 8.4 18.1 18.1 24.0 13.0 20.9 19.6
Inject 2D Sup. via a 2D Regression Head 15.5 6.4 14.0 13.8 26.8 8.5 16.6 16.9 25.9 13.0 21.2 16.6
Inject 2D Sup. via a 2D Diffusion Head 16.2 6.1 13.8 15.0 31.9 8.4 18.2 19.8 24.8 13.2 18.3 16.6
(Ours) Inject 2D Sup. via Imputed Labels 17.1 6.5 15.3 13.5 20.3 8.4 15.4 16.5 18.8 13.2 18.9 13.5

Table 5. Labels from lifting model (Row 4) better incorporate 2D supervision than alternatives based on attaching auxiliary 2D
forecasting heads based on diffusion (Row 3) or regression (Row 2).

motion in 3D space, which are not available in our setting.
Motion diversity and multi-modality. We compute these
standard motion quality metrics [16, 49] on ARCTIC, which
contains ground truth MANO labels. As reported in Tab. 4,
the diversity score for the ground truth distribution is 39.16.
The predicted motion distribution of ForeHand4D (diversity
= 41.14) is signficantly closer to the ground truth distribution
compared to LatentAct (diversity = 302.45) & tranformer
regressor (diversity = 187.82). We also observe better muti-
modality score for our model (19.64 vs. 13.04 for LatentAct).
Fig. 6 shows examples of multiple forecasts from the same
input: (top) box lifted in different directions, (bottom) right
hand moves towards different objects.
Comparison of proposed lifting scheme against alterna-
tives. In Tab. 5, performance does not improve by much upon

injecting supervision via a 2D regression head or 2D diffu-
sion head. However, imputing labels via our lifting model is
quite effective & improves M & MR by large amounts.
Performance trends over time. In Fig. 8, we see M
(MPJPE) does not start from 0. This is because the model
finds it hard to precisely predict the hand translation in the
given frame (likely due to scale ambiguity in predicting met-
ric 3D from a single image). M-F, where we factor out this
imperfection by aligning to the ground truth hand in the first
frame, shows a clear increasing trend.
Qualitative comparisons. We visualize the predicted mo-
tions for both our model and the Transformer Regressor (3D
+ 2D sup.) baseline in Fig. 7. Our motion predictions span
longer trajectories, are smoother & better placed in the scene
compared to the baseline, with the predictions being signifi-
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Figure 7. Qualitative comparison: ForeHand4D vs. Transformer Regressor (3D + 2D sup.) (Left) forecasts on 3 lab datasets (ARCTIC,
H2O, DexYCB), (Right) zero-shot forecasts on challenging EgoExo4D. Left hand in pink, right hand in blue. Color saturation decreases as
time proceeds, i.e. further away timesteps in future are in lighter shades. We render motions in camera frame & another view. Our predictions
span longer trajectories, are smoother, better placed in the scene & significantly more plausible on zero-shot generalization to EgoExo4D.

Figure 8. Performance trends over time. Forecasting gets harder
for longer prediction horizons for both (top) M & (bottom) M-F.

cantly more plausible on the novel EgoExo4D dataset. More
visualizations & analysis are provided in the supplementary.

5. Conclusion, Limitations, and Future Work

We present a system for forecasting bimanual 3D hand mo-
tion & articulation from a single image in everyday settings.
Our forecasting model consists of a conditional diffusion
model trained with different types of supervision: 3D labels
in lab datasets & imputed 3D labels from diverse datasets
using our lifting model. Our predictions span longer horizon,
are smoother, better placed & capture multiple interaction
modes, especially in zero-shot generalization settings.

Zero-shot predictions on novel datasets are challenging
for all models. In Fig. 7, we see some cases on EgoExo4D
where the hands are not well placed. While we consider
single image inputs for generality, incorporating context, e.g.
past frames or intent, as additional inputs to the forecasting
model could be useful. Lastly, object motion is also an
important aspect of interaction & is relevant for future work.
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