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In this document, we provide visualizations of our approach and baseline on each of the three tasks. The video summarizes
our key ideas, contributions and results.

1. Visualizations

3D pose of articulated objects on ARCTIC [4]: We show the 3D pose predictions of our model and the baseline on ARCTIC
in Fig. 1. We observe that our model predicts better 3D poses in interaction scenarios (note the difference in the articulation
angle and global pose). For each image, we show the projection of the object mesh with the predicted pose on the image and
from 2 different camera views. We also show 2 failure cases of our approach in the last row.

Depth prediction on NYU [6]: We compare the depth predicted by adding KPE encoding to ZoeDepth [1] with the base
ZoeDepth model. We show the depth predictions along with the squared error ∆ w.r.t. to ground truth depth (ranging from
dark blue: low to dark red: high). We consider two settings: high resolution 384 × 512 crops (Fig. 2) and low resolution
96× 128 crops (Fig. 3). Our model predicts better depth as evident by lower ∆ (lower intensity red areas). Gains are more
prominent in the low resolution setting compared to 384× 512 setting.

3D Object Detection on KITTI [5] & nuScenes [3]: We show the 3D bounding box predictions on Cars category for Cube
R-CNN [2] and our model (Cube R-CNN + KPE) , both in image space and in top-down view, in Fig. 4 (KITTI) and Fig. 5
(nuScenes). Our model predicts better 3D bounding boxes, as evident by fewer collisions (i.e. intersections between car
bounding boxes) and missed detections. We consider the models trained jointly on KITTI and nuScenes in these visualizations.
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Figure 1. 3D pose visualizations on ARCTIC [4]. Our proposed modification of intrinsics-aware positional encoding (KPE) improves over
the ArcticNet-SF [4] model by predicting better 3D poses in interaction scenarios (note the difference in the articulation angle and global
pose). For each image, we show the projection of the object mesh with the predicted pose on the image and from 2 different camera views.
We also show 2 failure caes of our approach in the last row.
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Figure 2. Depth prediction on NYU [6] with 384× 512 crops. We compare the depth predicted by adding KPE encoding to ZoeDepth [1]
with the base ZoeDepth model. We show the depth predictions along with the squared error ∆ w.r.t. to ground truth depth (ranging from dark
blue: low to dark red: high. Invalid regions are indicated as grey). Our model predicts better depth as evident by lower ∆ (lower intensity
red areas).
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Figure 3. Depth prediction on NYU [6] with 96× 128 crops. We compare the depth predicted by adding KPE encoding to ZoeDepth [1]
with the base ZoeDepth model. We show the depth predictions along with the squared error ∆ w.r.t. to ground truth depth (ranging from dark
blue: low to dark red: high. Invalid regions are indicated as grey). Our model predicts better depth as evident by lower ∆ (lower intensity
red areas). Gains are more prominent in this low resolution setting compared to 384× 512 setting (Fig. 2).
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Figure 4. 3D Object Detection on KITTI [5]. We show the 3D bounding box predictions on Cars category for Cube R-CNN [2] and our
model (Cube R-CNN + KPE), both in image space and in top-down view. Our model predicts better 3D bounding boxes, as evident by fewer
collisions (i.e. intersections between car bounding boxes) and missed detections.
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Figure 5. 3D Object Detection on nuScenes [3]. We show the 3D bounding box predictions on Cars category for Cube R-CNN [2] and our
model (Cube R-CNN + KPE), both in image space and in top-down view. Similar to the results on KITTI (Fig. 4), we observe better 3D
bounding box prediction of our model, as evident by fewer collisions (i.e. intersections between car bounding boxes) and missed detections.
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